PERBANDINGAN CLUSTERING KARYAWAN BERDASARKAN NILAI KINERJA DENGAN ALGORITMA K-MEANS DAN FUZZY C-MEANS

  • Anissa Enggar Pramitasari Universitas Kristen Satya Wacana
  • Yessica Nataliani Universitas Kristen Satya Wacana

Abstract

  1. XYZ is a company engaged in the yarn spinning industry (textile). To achieve the goal, PT. XYZ requires employees with good competence and discipline. Therefore the company assesses employees based on performance values to evaluate employee performance to increase employee productivity. To facilitate data grouping, data mining techniques are needed. This study uses the K-Means algorithm and the Fuzzy C-Means algorithm by grouping the performance data into 4 clusters, namely the level of performance is very good, level of performance is good, level of performance is sufficient and level of performance is less. The results of this study indicate that the Fuzzy C-Means algorithm is a better method than the K-Means algorithm for grouping employee performance data at PT. XYZ because the accuracy value is close to 100%.

References

[1] S. Setiawan, “Analisis Cluster Menggunakan Algoritma K-Means Untuk Mengetahui Kemampuan Pegawai Dibidang IT Pada CV. Roxed Ltd,” J. Pelita Inform., vol. 18, pp. 80–86, 2019, [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/1142.
[2] P. E. Mas`udia, F. Arinie, and L. D. Mustafa, “Clustering Data Remunerasi Dosen Untuk Penilaian Kinerja Menggunakan Fuzzy c-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 288–294, 2018, doi: 10.29207/resti.v2i1.97.
[3] P. R. N. Saputra and A. Chusyairi, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1077 – 1084, 2020.
[4] A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” Int. J. Artif. Intell. Res., vol. 1, no. 2, p. 26, 2017, doi: 10.29099/ijair.v1i2.17.
[5] Wikarno, R. Malani, and B. Suprapty, “Perbandingan Metode K-Means dan Fuzzy C-Means Untuk Pengelompokan Pegawai Berdasarkan Nilai Kinerja dan Tingkat Kedisiplinan Pegawai,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 45–52, 2018.
[6] D. Imantika et al., “Penerapan metode k-means clustering dan analytical hierarchy process (ahp) untuk pengelompokan kinerja guru dan karyawan pada sma brawijaya smart school,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. J-PTIIK, vol. 3, no. 8, pp. 7382–7390, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5958.
[7] S. A. Rahmah, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering ( Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja ),” J. Inf. Technol. Res., vol. 1, no. 1, pp. 1–5, 2020.
[8] I. K. Juni Arta, G. Indrawan, and G. R. Dantes, “Data Mining Rekomendasi Calon Mahasiswa Berprestasi Di Stmik Denpasar Menggunakan Metode Technique for Others Reference By Similarity To Ideal Solution,” JST (Jurnal Sains dan Teknol., vol. 5, no. 2, p. 792, 2017, doi: 10.23887/jst-undiksha.v5i2.8549.
[9] R. Syarif, M. T. Furqon, and S. Adinugroho, “Perbandingan Algoritme K-Means Dengan Algoritme Fuzzy C Means ( FCM ) Dalam Clustering Moda Transportasi Berbasis GPS,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 10, pp. 4107–4115, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2852.
[10] M. Simanjuntak and Dkk, “Penerapan Data Mining Pengelompokan Kejahatan Elektronik Sesuai UU ITE dengan Menggunakan Metode Clustering,” J. Mahajana Inf., vol. 3, no. 2, p. 3, 2018.
[11] G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
[12] N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C_Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan (Studi Kasus: Sekolah Tinggi Teknologi Bandung),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492.
[13] D. M. Santiaji, “Simki-Techsain Vol. 01 No. 01 Tahun 2017 ISSN : 0302-0117,” Simki-Techsin, vol. 01, no. 01, pp. 1–7, 2017.
[14] M. Martin and Y. Nataliani, “Klasterisasi kinerja karyawan menggunakan algoritma fuzzy c-means,” Aiti, vol. 17, no. 2, pp. 118–129, 2021, doi: 10.24246/aiti.v17i2.118-129.
Published
2021-09-14