Identifikasi Kesegaran Ikan Berdasarkan Citra Insang dengan Metode Convolution Neural Network

  • Miftahus Sholihin Universitas Islam Lamongan

Abstract

This study aims to create a fish freshness identification system based on the image of fish gills. With this system, it is hoped that the community will find it easier to determine fresh fish. The method used in this study is CNN. The data used in this study amounted to 150 fish gill image data which were categorized into three classes, namely fresh, not fresh, and rotten fish classes. This research provides 100% accuracy for the training process and 97.7% for the testing process.

References

[1] F. M. Diana, “OMEGA 3 DAN KECERDASAN ANAK,” J. Kesehat. Masy. Andalas, vol. 7, no. 2, Art. no. 2, Mar. 2013, doi: 10.24893/jkma.v7i2.113.
[2] D. Bee, “Aplikasi Penentuan Tingkat Kesegaran Ikan Selar Berbasis Citra Digital Dengan Metode Kuadrat Terkecil | Bee | d’CARTESIAN.” https://ejournal.unsrat.ac.id/index.php/decartesian/article/view/14985 (accessed May 04, 2021).
[3] S. Dwiyatno, I. Iksal, and S. Nugraha, “ALAT PENDETEKSI KESEGARAN IKAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR BERDASAR WARNA MATA BERBASIS ATMEGA 328,” PROSISKO J. Pengemb. Ris. Dan Obs. Sist. Komput., vol. 5, no. 2, Art. no. 2, Sep. 2018, Accessed: May 04, 2021. [Online]. Available: https://e-jurnal.lppmunsera.org/index.php/PROSISKO/article/view/789
[4] I. Indrabayu, M. Niswar, and A. A. Aman, “Sistem Pendeteksi Kesegaran Ikan Bandeng Menggunakan Citra,” J. INFOTEL, vol. 8, no. 2, Art. no. 2, Nov. 2016, doi: 10.20895/infotel.v8i2.119.
[5] N. M. S. Iswari, W. Wella, and R. Ranny, “Perbandingan Algoritma kNN, C4.5, dan Naive Bayes dalam Pengklasifikasian Kesegaran Ikan Menggunakan Media Foto,” Ultim. J. Tek. Inform., vol. 9, no. 2, pp. 114–117, Oct. 2017, doi: 10.31937/ti.v9i2.659.
[6] S. Winiarti, F. I. Indikawati, A. Oktaviana, and H. Yuliansyah, “Consumable Fish Classification Using k-Nearest Neighbor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 821, p. 012039, May 2020, doi: 10.1088/1757-899X/821/1/012039.
[7] A. Agustyawan, “Pengolahan Citra untuk Membedakan Ikan Segar dan Tidak Segar Menggunakan Convolutional Neural Network,” Indones. J. Appl. Inform., vol. 5, no. 1, Art. no. 1, Nov. 2020, doi: 10.20961/ijai.v5i1.41770.
[8] J. E. Hutagalung, “Identifikasi Kesegaran Ikan Nila menggunakan Teknik Citra Digital - CORE.” https://core.ac.uk/display/333718647?recSetID= (accessed May 08, 2021).
[9] S. Khansa, “PENERAPAN EKSTRAKSI CIRI TRANSFORMASI WAVELET DALAM PEMBUATAN MODEL KLASIFIKASI KESEGARAN IKAN SELAR,” Senamika, vol. 1, no. 2, Art. no. 2, Nov. 2020.
[10] E. Fitriani, “PERBANDINGAN ALGORITMA C4.5 DAN NAÏVE BAYES UNTUK MENENTUKAN KELAYAKAN PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN,” Sist. J. Sist. Inf., vol. 9, no. 1, Art. no. 1, Jan. 2020, doi: 10.32520/stmsi.v9i1.596.
[11] Ekojono, “Identification of Freshness of Marine Fish Based on Image of Hue Saturation Value and Morphology | Ekojono | Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi.” https://ejournal.unitomo.ac.id/index.php/inform/article/view/3228 (accessed May 04, 2021).
[12] W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, Mar. 2016, doi: 10.12962/j23373539.v5i1.15696.
[13] T. Shafira, “Implementasi Convolutional Neural Networks untuk Klasifikasi Citra Tomat Menggunakan Keras,” Thesis, Universitas Islam Indonesia, 2018. Accessed: May 04, 2021. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/6345
[14] E. N. Arrofiqoh and H. Harintaka, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI,” GEOMATIKA, vol. 24, no. 2, Art. no. 2, Nov. 2018, doi: 10.24895/JIG.2018.24-2.810.
[15] S. Fauzi, P. Eosina, and G. F. Laxmi, “Implementasi Convolutional Neural Network Untuk Identifikasi Ikan Air Tawar,” Semin. Nas. Teknol. Inf., vol. 2, pp. 163–167, Oct. 2019.
[16] R. A. Pangestu, B. Rahmat, and F. T. Anggraeny, “Implementasi Algoritma CNN Untuk Klasifikasi Citra Lahan Dan Perhitungan Luas,” J. Inform. Dan Sist. Inf. JIFoSI, vol. 1, no. 1, Art. no. 1, Mar. 2020.
[17] R. M. Prasmatio, B. Rahmat, and I. Yuniar, “DETEKSI DAN PENGENALAN IKAN MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK,” J. Inform. Dan Sist. Inf. JIFoSI, vol. 1, no. 2, Art. no. 2, Jul. 2020.
[18] F. I. Kurniadi, “Klasifikasi Topeng Cirebon menggunakan Metode Convolutional Neural Network | JATISI (Jurnal Teknik Informatika dan Sistem Informasi)”, Accessed: May 04, 2021. [Online]. Available: http://jurnal.mdp.ac.id/index.php/jatisi/article/view/568
[19] M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca,” J. Teknol. Inf. Dan Ilmu Komput., vol. 8, no. 2, Art. no. 2, Mar. 2021, doi: 10.25126/jtiik.2021824553.
[20] A. S. Nurqaderianie, M. Metusalach, and F. Fahrul, “TINGKAT KESEGARAN IKAN KEMBUNG LELAKI (Rastrelliger kanagurta) YANG DIJUAL ECERAN KELILING DI KOTA MAKASSAR,” J. IPTEKS Pemanfaat. Sumberd. Perikan., vol. 3, no. 6, Art. no. 6, Dec. 2017, doi: 10.20956/jipsp.v3i6.3062.
[21] E. Suprayitno, “KAJIAN KESEGARAN IKAN DI PASAR TRADISIONAL DAN MODERN KOTA MALANG,” JFMR J. Fish. Mar. Res., vol. 4, no. 2, Art. no. 2, Aug. 2020, doi: 10.21776/ub.jfmr.2020.004.02.13.
[22] C. Szegedy et al., “Going Deeper with Convolutions,” ArXiv14094842 Cs, Sep. 2014, Accessed: May 10, 2021. [Online]. Available: http://arxiv.org/abs/1409.4842
[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.
[24] E. Cetinic, T. Lipic, and S. Grgic, “Fine-tuning Convolutional Neural Networks for fine art classification,” Expert Syst. Appl., vol. 114, pp. 107–118, Dec. 2018, doi: 10.1016/j.eswa.2018.07.026.
[25] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning for image-based plant disease identification,” Comput. Electron. Agric., vol. 173, p. 105393, Jun. 2020, doi: 10.1016/j.compag.2020.105393.
[26] Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, “Identification of rice diseases using deep convolutional neural networks,” Neurocomputing, vol. 267, pp. 378–384, Dec. 2017, doi: 10.1016/j.neucom.2017.06.023.
[27] N. Rahman, “What is the benefit of using average pooling rather than max pooling? - Quora.” https://www.quora.com/What-is-the-benefit-of-using-average-pooling-rather-than-max-pooling (accessed May 10, 2021).
Published
2021-09-14