Klasifikasi Penyakit Antraknosa Citra Cabai Rawit Dengan Metode Convolutional Neural Network (CNN)

  • Mukti Setiono UNIVERSITAS MERCU BUANA YOGYAKARTA

Abstract

Abstract

Indonesia, as an agricultural country, has a very vital agricultural sector, including the cultivation of cayenne pepper. Cayenne peppers are often infected with anthracnose disease caused by the fungus Colletotrichum sp., causing significant economic losses. This research aims to develop a Convolutional Neural Network (CNN) model for classifying anthracnose in images of cayenne pepper, in order to increase the effectiveness of disease diagnosis. Image data was obtained from chili gardens in Savanajaya Village, Buru Regency, with a total of 1000 images, which were divided into 500 images of healthy chilies and 500 images of infected chilies. The data is processed and labeled manually, then resized for consistency. CNN was trained using the Adam optimizer, RMSprop, and SGDM, with test results showing that the Adam optimizer provided the highest accuracy of 93.25%. The implementation of CNN has proven effective in classifying anthracnose, helping farmers in making timely decisions for disease control, thereby increasing productivity and reducing economic losses. This research emphasizes the importance of choosing the right optimizer and dataset quality in developing image-based plant disease classification models.

References

[1] M. Alfin Jimly Asshiddiqie, B. Rahmat, dan F. Tri Anggraeny, “DETEKSI TANAMAN TEBU PADA LAHAN PERTANIAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” 2020.
[2] R. Betris Tosi, H. D. Mbura, dan Y. R. Kaesmetan, “Implementasi CNN Dalam Mengidentifikasi Kematangan Cabai Berdasarkan Warna,” INDOTECH Indonesian Journal of Education And Computer Science, vol. 2, no. 1, 2024.
[3] D. S. Anggraeni, A. Widayana, P. D. Rahayu, C. Rozikin, T. Informatika, dan U. S. Karawang, “STRING (Satuan Tulisan Riset dan Inovasi Teknologi) METODE ALGORITMA CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI PENYAKIT TANAMAN CABAI,” 2022.
[4] R. Rosalina dan A. Wijaya, “Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, Des 2020, doi: 10.28932/jutisi.v6i3.2857.
[5] R. Nurjasmi dan D. Suryani, “Uji Antagonis Actinomycetes terhadap Patogen Colletotrichum capsici Penyebab Penyakit Antraknosa pada Buah Cabai Rawit,” 2020. [Daring]. Tersedia pada: http://ejournal.urindo.ac.id/index.php/pertanian
[6] J. Agroekoteknologi Tropika dan P. J. Studi Agroekoteknologi Fakultas Pertanian Universitas Udayana PB Sudirman Denpasar, “Uji Antagonistik Bacillus siamensis dan Paenibacillus polymyxa Terhadap Colletotrichum gloeosporioides KLCR2 Penyebab Penyakit Antraknosa pada Buah Cabai Rawit (Capsicum frutescens L.) NI KOMANG SRI BAWANTARI DEWA NGURAH SUPRAPTA *) KHAMDAN KHALIMI,” Jurnal Agroekoteknologi Tropika, vol. 9, no. 3, 2020, [Daring]. Tersedia pada: https://ojs.unud.ac.id/index.php/JAT
[7] A. Putri Suyanti, M. dan Helda Orbani Rosa, P. Pemberian Beberapa Ekstrak Gulma Lahan Pasang Surut, dan H. Orbani Rosa Prodi Proteksi Tanaman Fakultas Pertanian Universitas Lambung Mangkurat Coresponden Author, “Pengaruh Pemberian Beberapa Ekstrak Gulma Lahan Pasang Surut Dalam Menghambat Colletotrichum sp Penyebab Penyakit Antraknosa Pada Buah Cabai Rawit,” Proteksi Tanaman Tropika, Jun 2020.
[8] I. E. Handayani dan D. Avianto, “Klasifikasi Penyakit Antraknosa Pada Cabai Merah Teropong ‘Inko Hot’ Dengan Metode Convolutional Neural Network,” SINTECH, vol. 6, 2023, [Daring]. Tersedia pada: https://doi.org/10.31598
[9] Y. Bili dkk., “Perancangan Alat Pendeteksi Kematangan Buah Nanas Dengan Menggunakan Mikrokontroler Dengan Metode Convolutional Neural Network (CNN),” 2022. [Daring]. Tersedia pada: http://ojs.fikom-methodist.net/index.php/METHOTIKA
[10] K. Azmi, S. Defit, dan U. Putra Indonesia YPTK Padang Jl Raya Lubuk Begalung-Padang-Sumatera Barat, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, hlm. 2023, 2023.
[11] H. A. Dees dan Supatman, “Identifikasi Citra Wajah Glowing Menggunakan Metode Convolutional Neural Network (CNN),” VISA: Journal of Visions and Ideas, vol. 4, no. 2, hlm. 746–757, 2024.
[12] Nurdianto dan Supatman, “CLEANLINESS IMAGE CLASSIFICATION OF PACKAGED DRINKING WATER USING CONVOLUTIONAL NEURAL NETWORK (CNN),” 2023. Diakses: 20 Mei 2024. [Daring]. Tersedia pada: https://jurnal.forai.or.id/index.php/forai/article/view/6/1
[13] R. , Novrian, T. , Agustiani, M. , Fikri, dan M. F. Hikmatullah, “Penerapan Algoritma Random Forest dalam Prediksi Status Penerima PIP pada Siswa: Studi Kasus pada SMK Amaliah 1,” 2024.
[14] M. H. Veltin Sinaga, Albirra Muhammad, dan M. H. Sidiq, “Klasifikasi Gambar Pemandangan dengan Kecerdasan Buatan Berbasis CNN,” JTIK(Jurnal Teknologi Informasi dan Komunikasi), Apr 2024.
[15] I. Wulandari, H. Yasin, dan T. Widiharih, “KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN),” JURNAL GAUSSIAN, vol. 9, hlm. 273–282, 2020, [Daring]. Tersedia pada: https://ejournal3.undip.ac.id/index.php/gaussian/
[16] M. Fahmi dan A. Yudhana, “Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network,” Jurnal Riset Komputer), vol. 10, no. 1, hlm. 2407–389, Feb 2023, doi: 10.30865/jurikom.v10i1.5468.
Published
2024-06-10