CLASSIFICATION OF POSITION TRENDS IN THE INFORMATION TECHNOLOGY INDUSTRY USING THE NAIVE BAYES METHOD

  • In'am Falahuddin Universitas Mercu Buana Yogyakarta
Keywords: Classification, TF-IDF, Naive Bayes Classifier, Job Application

Abstract

The rapid development of technology generates information about job vacancies every day, creating a dynamic ecosystem that has changed the employment landscape with the emergence of new positions related to new technologies. Therefore, understanding job position trends is crucial for applicants to anticipate market needs and prepare accordingly. Position trend classification is the process of identifying and analyzing job titles into categories that are currently popular. This research aims to create a classification model using the Naive Bayes method in grouping job vacancy titles by category. Naive Bayes is a probabilistic-based prediction technique based on Bayes' Theorem, but researchers use TF-IDF text representation parameters to calculate the weight of words in the job title dataset. Data was taken from two job search platforms, jobs.linkedin.com and jobstreet.com, which resulted in seven categories from 7,254 datasets. Classification results using the naive bayes method provide good results with an accuracy rate of 82.77%. Then the test results obtained with a ratio of 8: 2 produce an average F1-Score value of 82.78%.

References

[1] W. M. P. Dhuhita, M. F. K. A. Darmawan, L. Triana, and N. Ankisqiantari, “Perbandingan Algoritma Supervised Learning untuk Klasifikasi Judul Skripsi Berdasarkan Bidang Dosen,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 2, Aug. 2022, doi: 10.28932/jutisi.v8i2.4960.
[2] R. Kosasih and A. Alberto, “Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier,” ILKOM Jurnal Ilmiah, vol. 13, no. 2, pp. 101–109, Aug. 2021, doi: 10.33096/ilkom.v13i2.721.101-109.
[3] M. Iqbal, A. Davy Wiranata, R. Suwito, and R. Faiz Ananda, “KLIK: Kajian Ilmiah Informatika dan Komputer Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter,” Media Online, vol. 4, no. 3, pp. 1799–1807, 2023, doi: 10.30865/klik.v4i3.1402.
[4] “SKRIPSI KEYWORD EXTRACTION JUDUL BERITA ONLINE DI INDONESIA MENGGUNAKAN METODE TF-IDF PROGRAM STUDI INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS MERCU BUANA YOGYAKARTA TAHUN 2024.”
[5] V. S and J. R, “Text Mining: open Source Tokenization Tools – An Analysis,” Advanced Computational Intelligence: An International Journal (ACII), vol. 3, no. 1, pp. 37–47, Jan. 2016, doi: 10.5121/acii.2016.3104.
[6] A. T. Hardianti, A. R. Manga, and H. Darwis, “Penerapan Metode Naïve Bayes pada Klasifikasi Judul Jurnal,” Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, vol. 3, no. 2, 2018.
[7] S. Sarica and J. Luo, “Stopwords in technical language processing,” PLoS One, vol. 16, no. 8 August, Aug. 2021, doi: 10.1371/journal.pone.0254937.
[8] J. Li, “A comparative study of keyword extraction algorithms for English texts,” Journal of Intelligent Systems, vol. 30, no. 1, pp. 808–815, Jan. 2021, doi: 10.1515/jisys-2021-0040.
[9] P. Eko, P. Utomo, U. Khaira, and T. Suratno, “ANALISIS SENTIMEN ONLINE REVIEW PENGGUNA BUKALAPAK MENGGUNAKAN METODE ALGORITMA TF-IDF,” 2019.
[10] A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government Naïve Bayes Classification on Document Classification to Identify E-Government Content,” Journal of Applied Intelligent System, vol. 1, no. 1, pp. 48–55, 2016.
[11] U. Pujianto, T. Widiyaningtyas, D. D. Prasetya, and B. Romadhon, “TEKNO Jurnal Teknologi Elektro dan Kejuruan Penerapan algoritma naïve bayes classifier untuk klasifikasi judul skripsi dan tugas akhir berdasarkan Kelompok Bidang Keahlian,” 2017. [Online]. Available: http://journal2.um.ac.id/index.php/tekno
[12] M. Arvyantomo, N. Ratama, and K. Kunci, “Analisis Sentimen Masyarakat Indonesia Terhadap Invasi Russia Di Ukraina Menggunakan Metode Naïve Bayes Pada Media Sosial Facebook.” [Online]. Available: https://journal.mediapublikasi.id/index.php/logic
[13] M. Oris et al., “Merdeka Kreatif di Era Pandemi Covid-19 Suatu Pengantar.”
[14] A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” Jurnal Sistim Informasi dan Teknologi, pp. 88–94, Aug. 2021, doi: 10.37034/jsisfotek.v3i3.49.
[15] I. Widhi Saputro and B. Wulan Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa Naïve Bayes Algorithm Performance Test for Student Study Prediction,” Citec Journal, vol. 6, no. 1, 2019.
Published
2024-06-10