Sentimen Analisis Review Aplikasi Skorlife pada Google Play Store dengan menggunakan metode Naïve Bayes

  • Suwanda Aditya Saputra Universitas Bina Sarana Informatika

Abstract

One of the financial institutions that holds strategic value in the Indonesian economy is the Banking Institution. The relationship between banks and depositors is a contractual relationship between debtors and creditors, based on the principle of prudence, with the aim that banks using customers' funds will be able to repay the funds deposited by the public to them. The Skorlife BI Checking application is presented as a solution to provide better access to credit data and financial reports for users. With the Skorlife BI Checking application, users can easily monitor and manage their financial status, check credit history, and provide suggestions and criticisms from customers to improve the system and services provided. In this case, the author obtained data from comments on the Google Play Store and used the Naive Bayes algorithm. The accuracy results obtained prove that the highest negative comments have an Accuracy of 100% and AUC of 0.500.

References

[1] Rahmawati, A. T, Saifi, M, and Hidayat, R, R.,“ANALISIS KEPUTUSAN PEMBERIAN KREDIT DALAM LANGKAH MEMINIMALISIR KREDIT BERMASALAH,” Jurnal Administrasi Bisnis (JAB)|Vol. 35 No. 1 Juni 2016.

[2] Etty Mulyati, 2016, “Kredit Perbankan. Bandung,” PT. Refika Aditama, hlm. 69.

[3] Takasenseran, M. P., “Perjanjian Antara Bank dengan Nasabah Menurut Undang-Undang Nomor 10 Tahun 1998”, Lex et Societatis, Vol. IV/No.7/Juli 2016.

[4] J. Ipmawati, Kusrini, and E. Taufiq Luthfi., “Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen,” Indonesian Journal on Networking and Security, Vol. 6 No 1, 2017.

[5] Sari, Eka Novita., “Analisa Algoritma Apriori Untuk Menentukan Merek Pakaian Yang Paling Diminati Pada Mode Fashion Group Medan.” Pelita Informatika Budi Darma IV No 3: 35–39, 2013.

[6] Susilowati, Elly, et al., “Implementasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter.” E-Proceeding of Engineering, vol. 2, no. 1, pp. 1–7, 2015.

[7]Raharjo, Suwanto, and Edi Winarko., “Klasterisasi, Klasifikasi Dan Peringkasan Teks Berbahasa Indonesia.” Kommit 2014 vol. 8, pp. 391–401, Oktober 2014.

[8]Suyanto., 2017, “Data Mining untuk Klasifikasi dan Klasterisasi Data.” Bandung: Informatika Bandung.

[9]A. Mukminin and D. Riana., “Komparasi Algoritma C4 . 5 , Naïve Bayes Dan Neural Network Untuk Klasifikasi Tanah,” Jurnal Informatika,Vol. 4, No 1, 2017.

[10] N. Muchammad Shiddieqy Hadna, P. Insap Santosa, and W. Wahyu Winarno., “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Semin. Nas. Teknol. Inf. dan Komun, 2016.

[11] U. M. Boy.,“Analisis Sentimen Pada Twitter Menggunakan Text Mining Skripsi,” 2014.

[12] C. B. Safari., 2012, “Skripsi Analisis Sentimen Menggunakan Metode Klasifikasi SVM.” Jakarta: Universitas Pendidikan Indonesia.

[13] J. Ipmawati, Kusrini, and E. Taufiq Luthfi., “Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen,” Indonesian Journal on Networking and Security, Vol. 6 No 1, 2017.
Published
2024-06-10