Analisis Daftar Pemilih Tetap Pemilihan Gubernur dan Wakil Gubernur menggunakan Algoritma K-Means

  • Syahrul Dwi Hilda Universitas Singaperbangsa Karawang
  • Apriade Voutama Universitas Singaperbangsa Karawang
  • Yuyun Umaidah Universitas Singaperbangsa Karawang
Keywords: permanent voter list, k-means, rapidminer, clustering, data mining

Abstract

Permanent voters list is a very large collection of data in an election. Permanent voters list data is very important for an institution related to this, one of which is a village. Lack of understanding of Data Mining at the village level is a bad thing, because Data Mining is very much needed when associated with a lot of data because one of them can make it easier to group data or clustering with the k-means algorithm which is an effective choice for clustering. In this study using the k-means algorithm clustering method supported by the RapidMiner application.  Processing of permanent voter list data will be needed by institutions or related. The results of this research assisted by the rapidminer application with the k-means algorithm clustering method successfully grouped or clustering of the permanent voters list with age and address variables in institutions or those in need, especially in this study in Curug Village, Klari District, Karawang Regency.

References

[1] Y. Yusrin and S. Salpina, “Partisipasi generasi millenial dalam mengawasi tahapan pemilu 2024,” J. Educ., vol. 5, no. 3, pp. 9646–9653, 2023, doi: 10.31004/joe.v5i3.1842.
[2] I. Nasir, “Analisis Hukum Penanganan Pelanggaran Adminitrasi Pemilu/Pemilihan,” Khazanah Huk., vol. 2, no. 1, pp. 41–50, 2020, doi: 10.15575/kh.v2i1.7689.
[3] G. Fajriansyah, G. F. Nama, and Y. Mulyani, “Analisis daftar pemilih tetap pada hasil rekapitulasi Kpu berdasarkan usia menggunakan Algoritma K-Means (Studi kasus : Kota Bandar Lampung),” Electrician, vol. 15, no. 1, pp. 39–53, 2021, doi: 10.23960/elc.v15n1.2147.
[4] R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.
[5] A. P. Riani, A. Voutama, and T. Ridwan, “Penerapan K-Means clustering dalam pengelompokan hasil belajar peserta didik dengan metode Elbow,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 1, p. 164, 2023, doi: 10.53513/jsk.v6i1.7351.
[6] A. Amrullah, I. Purnamasari, B. N. Sari, G. Garno, and A. Voutama, “Analisis cluster faktor penunjang pendidikan menggunakan algoritma K-Means (studi kasus: Kabupaten Karawang),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 2, pp. 244–252, 2022, doi: 10.36595/jire.v5i2.701.
[7] V. Ramadhan and A. Voutama, “Clustering menggunakan algoritma K-Means pada penyakit ISPA di Puskesmas Kabupaten Karawang,” J. Pendidik. dan Konseling, vol. 4, no. 5, pp. 462–473, 2022.
[8] B. Nurseptia, A. Voutama, and N. Haeryana, “Penerapan algoritma K-Means untuk mengelompokkan Kabupaten/Kota dalam upaya pemetaan lapangan pekerjaan baru,” J. Teknol. Informasi), vol. 6, no. 2, pp. 181–186, 2022.
[9] F. M. Almufqi and A. Voutama, “Perbandingan metode Data Mining untuk memprediksi prestasi,” J. Tek., vol. 15, no. 1, pp. 61–66, 2023, doi: 10.30736/jt.v15i1.929.
[10] R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan algoritma K-Means dan K-Medoids untuk pengelompokkan data obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.
Published
2023-09-15