Sentiment Analysis of Indonesian Society's Against Electric Vehicle Products Using VADER

  • Muchamad Taufiq Anwar Politeknik STMI Jakarta
Keywords: sentiment analysis, electric vehicle, VADER


After introducing electric vehicle products to the market, manufacturers need to find out public opinion/sentiment towards the products that have been introduced. This information can be used by manufacturers as a basis for determining the next business strategy. One technique that can be used is sentiment analysis which is part of Natural Language Processing in Data Mining / Artificial Intelligence. This study aims to determine public sentiment towards an electric vehicle product using a lexicon and rule-based sentiment analysis method approach called VADER (Valence Aware Dictionary and Sentiment Reasoner). A total of 3707 tweets (955 unique data) were taken using the tweepy library in Python and analyzed using the VADER submodule in the nltk library (Natural Language Toolkit) and visualization was made using the wordcloud library. The results showed that the majority (95%) of public sentiment was positive, and 5% negative. The positive sentiment conveyed by the public is related to product advantages such as features, design, sophistication, and environmental friendliness. Meanwhile, negative sentiments are related to the absence of fast charging and prices that are still considered uneconomical.


[1] C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for sentiment analysis of social media text,” in Proceedings of the international AAAI conference on web and social media, 2014, vol. 8, no. 1, pp. 216–225.
[2] E. Zuliarso, M. T. Anwar, K. Hadiono, and I. Chasanah, “Detecting Hoaxes in Indonesian News Using TF/TDM and K Nearest Neighbor,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 835, no. 1, p. 12036.
[3] M. T. Anwar, “Automatic Complaints Categorization Using Random Forest and Gradient Boosting,” Adv. Sustain. Sci. Eng. Technol., vol. 3, no. 1, p. 210106, 2021.
[4] M. T. Anwar, L. Ambarwati, D. Agustin, and others, “Analyzing Public Opinion Based on Emotion Labeling Using Transformers,” in 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech), 2021, pp. 74–78.
[5] V. Bonta and N. K. N. Janardhan, “A comprehensive study on lexicon based approaches for sentiment analysis,” Asian J. Comput. Sci. Technol., vol. 8, no. S2, pp. 1–6, 2019.
[6] A. Deviyanto and M. D. R. Wahyudi, “Penerapan analisis sentimen pada pengguna twitter menggunakan metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, pp. 1–13, 2018.
[7] P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets responding to the Indonesian Government’s handling of COVID-19: Sentiment analysis using SVM with normalized poly kernel,” J. Inf. Syst. Eng. Bus. Intell., vol. 6, no. 2, pp. 112–122, 2020.
[8] B. Gunawan, H. Sastypratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 4, no. 2, pp. 113–118, 2018.
[9] B. M. Pintoko and K. M. Lhaksmana, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Na{\"\i}ve Bayes Classifier,” eProceedings Eng., vol. 5, no. 3, 2018.
[10] Y. S. Mahardhika and E. Zuliarso, “Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes Classifier,” 2018.
[11] S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Na{\"\i}ve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 1, pp. 157–163, 2021.
[12] B. Laurensz and E. Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021.
[13] A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, pp. 115–123, 2020.
[14] M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Na{\"\i}ve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.
[15] H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” J. Inf. Syst. Dev., vol. 5, no. 2, 2020.
[16] F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng-Seri Inform., vol. 3, no. 1, pp. 50–59, 2018.
[17] F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Indones. Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020.
[18] R. Y. Hayuningtyas and R. Sari, “Analisis sentimen opini publik bahasa indonesia terhadap wisata tmii menggunakan na{\"\i}ve bayes dan pso,” Techno Nusa Mandiri J. Comput. Inf. Technol., vol. 16, no. 1, pp. 37–42, 2019.
[19] G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” INTEGER J. Inf. Technol., vol. 2, no. 1, 2017.
[20] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.,” 2009.
[21] L. Oesper, D. Merico, R. Isserlin, and G. D. Bader, “WordCloud: a Cytoscape plugin to create a visual semantic summary of networks,” Source Code Biol. Med., vol. 6, no. 1, p. 7, 2011.
[22] T. Kluyver et al., “Jupyter Notebooks -- a publishing format for reproducible computational workflows,” in Positioning and Power in Academic Publishing: Players, Agents and Agendas, 2016, pp. 87–90.
[23] M. T. Anwar, M. P. Utami, L. Ambarwati, and A. W. Arohman, “Identifying Social Media Conversation Topics Regarding Electric Vehicles in Indonesia Using Latent Dirichlet Allocation,” in 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2022, pp. 102–106.
[24] S. Nugrohadi and M. T. Anwar, “Pelatihan Assembler Edu untuk Meningkatkan Keterampilan Guru Merancang Project-based Learning Sesuai Kurikulum Merdeka Belajar,” Media Penelit. Pendidik. J. Penelit. dalam Bid. Pendidik. dan Pengajaran, vol. 16, no. 1, pp. 77–80, 2022.
[25] M. T. Anwar, L. Heriyanto, D. R. A. Permana, and G. M. Rahmah, “Optimizing LSTM Model for Low-Cost Green Car Demand Forecasting,” in 2022 1st International Conference on Information System \& Information Technology (ICISIT), 2022, pp. 90–95.