Identifikasi text mining isu blokir Kominfo di Twitter dengan metode support vertor machine

  • Fachmi Ramdani STMIK LIKMI

Abstract

The increasingly widespread use of social media has led to the formation of a forum that can be used by the public to express opinions in various forms, one of which is the use of Twitter. One of the issues that is currently being discussed is related to public opinion re-garding the Blocking of Communications and Informatics that arose as a result of the gov-ernment blocking applications that had not been registered with the Indonesian Communi-cations and Information Technology's Electronic System Operator (PSE), which was a trending topic on various social media platforms, one of which was Twitter. This study aims to analyze the various comments on Twitter given by the public. Collecting data from this study uses several approaches, one of which is taking data from keywords and hashtags with a certain amount of data that can be classified, then after the data is collect-ed it will go through a data processing process using the text mining method. Support Vec-tor Machine (SVM) Algorithm. This research will obtain a system that can classify positive and negative comments.

References

[1] E. Y. Arifianto, “Analisis topik data tindak kriminal pada media sosial Twitter menggunakan metode LDA (Latent Dirichlet Allocation),” pp. 1–204, 2020, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/28540%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/28540/14917209 Ervan Yogi Arifianto.pdf?sequence=1
[2] N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis sentimen Gojek pada media sosial Twitter dengan klasifikasi Support Vector Machine (SVM),” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.
[3] S. C. Dewanti, “Pembatasan Internet Dalam Mengatasi Konflik Di Papua,” J. Info Singk., vol. 11, no. 17, pp. 1–6, 2019, [Online]. Available: http://berkas.dpr.go.id/puslit/files/info_singkat/Info Singkat-XI-17-I-P3DI-September-2019-1946.pdf
[4] D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan klassifikasi SMS berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 432–437, 2021, doi: 10.32736/sisfokom.v10i3.1302.
[5] F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk pengkategorian penelitian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.
[6] V. Kevin, S. Que, A. Iriani, and H. D. Purnomo, “Analisis sentimen transportasi online menggunakan Support Vector Machine berbasis Particle Swarm Optimization ( Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization ),” vol. 9, no. 2, pp. 162–170, 2020.
[7] S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap analisis sentimen komentar masyarakat pada media sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
[8] T. P. Lestari, “Analisis Text Mining pada sosial media Twitter menggunakan metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 65–71, 2022, doi: 10.37034/infeb.v4i3.146.
[9] R. R. Moningka, D. B. Setyohadi, K. Khaerunnisa, and P. Pranowo, “Identifikasi kebutuhan dasar di tempat evakuasi sementara pasca erupsi Merapi dengan Sentiment Analisis Dan Support Vector Machine,” Telematika, vol. 15, no. 1, p. 77, 2018, doi: 10.31315/telematika.v15i1.3068.
[10] S. Winiarti, D. Widayanti, U. Ahdiani, and T. Ismail, “Klasifikasi jenis buku berdasarkan cover dan judul buku menggunakan metode Support Vector Machine dan Cosine Similarity,” Sainteks, vol. 19, no. 1, p. 53, 2022, doi: 10.30595/sainteks.v19i1.13423.
[11] L. Mutawalli, M. T. A. Zaen, and W. Bagye, “Klasifikasi teks media sosial Twitter menggunakan SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto),” J. Inform. dan Rekayasa Elektron., vol. 2, no. 2, p. 43, 2019, doi: 10.36595/jire.v2i2.117.
[12] A. P. H. Putra, E. P. Purwandari, and ..., “Identifikasi pola iris mata menggunakan metode support vector machine dengan ekstraksi ciri hue saturation value (hsv) histogram, gabor filter dan wavelet transform,” Rekursif J. …, vol. 8, no. 1, pp. 23–32, 2020, [Online]. Available: https://ejournal.unib.ac.id/index.php/rekursif/article/view/8144%0Ahttps://ejournal.unib.ac.id/index.php/rekursif/article/viewFile/8144/5709
[13] A. C. Sitepu, W. Wanayumini, and Z. Situmorang, “Analisis kinerja Support Vector Machine dalam mengidentifikasi komentar perundungan pada jejaring sosial,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 475, 2021, doi: 10.30865/mib.v5i2.2923.
[14] R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
[15] D. Tuhenay, “Perbandingan klasifikasi bahasa menggunakan metode Naïve Bayes Classifier (NBC) Dan Support Vector Machine (SVM),” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 2, pp. 105–111, 2021, doi: 10.33387/jiko.v4i2.2958.
[16] H. K. Mangat, “Analisis sentimen pada tweet dengan tagar #bpjsrasarentenir menggunakan metode support vectore machine (svm) skripsi,” 2021.
Published
2023-03-15