Identifikasi Strategi Penjualan dengan Pendekatan Asosiasi FP-Growth Pada Perusahaan Ritel Berkah

  • Foezi Arisandi SJ STIMIK LIKMI BANDUNG
Keywords: data mining, association, fp-growth algorithm, retail

Abstract

In the face of global trends, today the world is faced with "global uncertainty" where there has been an irreversible trend in the business world and the market that has changed the way a company does business to become more towards digital business, therefore decision-making by a company executive is based on data, facts, and knowledge quickly and accurately becomes a major requirement to increase competitiveness in various business fields, therefore we take Berkah shop which is a retail company that sells multiple needs for household appliances, cafes, restaurants, and catering located in Sukabumi City for research. This study will aim to find data, information, and knowledge to determine the right sales strategy, including product bundling and product display, for, now there are still obstacles in determining the strategy above because there has not been an analysis of existing sales data so it is still difficult to determine the product. anything that is often purchased by customers in one sales receipt and what products are related to each other or form association rules to be installed in product displays. So we need a method that usable to deal with existing problems, in this study the method used is the Data Mining Association analysis method by applying the Frequent Pattern Growth (FP-Growth) algorithm in the transaction data analysis process for one year (June 01, 2021, until May 31, 2022), the data for the period has several sales transactions of 13734 with a total record of 49360. To help achieve the optimal finish, the RapidMiner application software is used. The results of the application of association rules in this study resulted in the highest 6 association rules with a minimum support value of 0.001 and a minimum confidence value of 0.01 and resulted in the lowest 42 association rules with a minimum support value of 0.001 and a minimum confidence value of 0.5. The association rules found can be used as material for consideration in making effective and accurate product bundling and product display sales strategy decisions so that in particular the company can increase sales and in general improve competitiveness

References

[1] Z. A. Priyo Sutopo, Dedi Cahyadi, “Sistem Informasi Eksekutif Monitoring,” J. Inform. Mulawarman, vol. 11, no. 1, pp. 1–6, 2016.
[2] Anggada Maulana, “Konsep Dasar Data Mining,” Konsep Data Min., vol. 1, pp. 1–16, 2018.
[3] A. H. Mirza, “MODEL DATA MINING UNTUK MENDUKUNG STRATEGI PROMOSI PERGURUAN TINGGI ( Studi kasus Universitas Bina Darma Palembang ),” no. September, 2018.
[4] A. N. Rahmi, Y. A. Mikola, and K. Kunci, “IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN POLA PEMBELIAN PADA CUSTOMER ( STUDI KASUS : TOKO BAKOEL SEMBAKO ) Abstraksi Keywords :,” vol. 4, no. 1, 2021.
[5] W. D. Ramadana, N. Satyahadewi, and H. Perdana, “PENERAPAN MARKET BASKET ANALYSIS PADA POLA PEMBELIAN BARANG,” vol. 11, no. 3, pp. 431–438, 2022.
[6] P. Toko, I. N. A. Menggunakan, and A. Apriori, “PENGEMBANGAN STRATEGI TATA LETAK BARANG,” vol. 4, no. 1, pp. 63–76, 2022.
[7] A. R. Wibowo, A. Jananto, P. Studi, S. Informasi, F. T. Informasi, and U. Stikubank, “IMPLEMENTASI DATA MINING METODE ASOSIASI ALGORITMA FP-GROWTH PADA PERUSAHAAN RITEL,” vol. 10, pp. 200–212, 2020.
[8] I. Musdalifah and A. Jananto, “Analisis Perbandingan Algoritma Apriori Dan FP-Growth Dalam Pembentukan Pola Asosiasi Keranjang Belanja Pelanggan”.
[9] I. K. D. Kertiana and I. G. A. K. S. Artini, “Pengaruh Visual Merchandising, Atmosfer Toko, Dan Display Produk Terhadap Impulse Buying Pelanggan Ramayana Denpasar,” E-Jurnal Manaj. Univ. Udayana, vol. 8, no. 11, p. 6533, 2019, doi: 10.24843/ejmunud.2019.v08.i11.p08.
[10] Hendu and E. Supariyani, “Pengaruh Bundling Pricing dan Odd Pricing Terhadap Citra Toko Ritel Pengaruh Bundling Pricing dan Odd Pricing Terhadap Citra Toko Ritel Carrefour Cibinong,” J. Manaj. dan Bisnis BENEFIT, vol. 4, no. 1, pp. 156–166, 2019.
[11] N. Devita Sari and S. Khoiriah, “Penerapan Metode Asosiasi Pada Toko Afifa Dengan Algoritma Apriori,” Teknol. Inf. Komputer), vol. 1, no. 1, pp. 8–17, 2022.
[12] M. M. Fp-growth, F. Kana, M. Ramadhan, and R. Mahyuni, “Implementasi Data Mining Menganalisa Pola Penjualan Rempah-Rempah,” vol. 1, pp. 557–564, 2022.
Published
2023-03-15