Klasifikasi Jenis Plastik HDPE, LDPE, dan PS Berdasarkan Tekstur Menggunakan Metode Support Vector Machine
Abstract
Plastic is one type of large molecule formed by the polymerization process. Many plastics circulate and are often found, such as High-Density Polyethylene (HDPE), Low-Density Polyethlene (LDPE), and Polystyrene (PS) plastic types. To classify HDPE, LDPE, and PS plastic types based on texture characteristic extraction, the Local Binary Pattern (LBP) and Support Vector Machine (SVM) methods can be used. This study uses a manually photographed HDPE, LDPE, and PS plastic types of images dataset, and there are 180 images consisting of 126 training data and 54 test data with percentage of training data is 70% and testing data is 30% size 450450 pixels. The image dataset is converted from an RGB image into a grayscale image for the LBP feature extraction process. After removing texture characteristics, the classification process uses the SVM method with RBF kernels, linear, polynomial. The performance of the LBP features and SVM methods gives the highest accuracy average value of 95,05%, precision of 92,78%, and recall of 92,58% with polynomial kernel.
References
[2] P. Purwaningrum, “Upaya Mengurangi Timbulan Sampah Plastik Di Lingkungan,” Indones. J. URBAN Environ. Technol., vol. 8, no. 2, 2016, doi: 10.25105/urbanenvirotech.v8i2.1421.
[3] D. S. T. Sitorus, “Pengembangan Sistem Identifikasi Dan Klasifikasi Plastik Jenis PET, HDPE, dan PP Dengan Metode Deteksi Tepi,” 2020, [Online]. Available: https://repository.unsri.ac.id/28834
[4] D. Alamsyah, “Pengenalan Mobil pada Citra Digital Menggunakan HOG-SVM,” Jatisi, vol. 1, no. 2, pp. 162–168, 2017.
[5] Meiriyama, “Klasifikasi Citra Buah Berbasis Fitur Warna HSV dengan Klasifikator SVM,” J. Elem., vol. 4, no. 1, 2018.
[6] A. R. T. H. Ririd, A. W. Kurniawati, and Y. Yunhasnawa, “Implementasi Metode Support Vector Machine Untuk Identifikasi Penyakit Daun Tanaman Kubis,” J. Inform. Polinema, vol. 4, no. 3, 2018, doi: 10.33795/jip.v4i3.204.
[7] D. Amputri, S. Nadra, and M. E. Al Rivan, “Perbandingan Jarak Potret Dan Resolusi Kamera Pada Tingkat Akurasi Pengenalan Angka KWH Meter Menggunakan SVM,” J. Ilm. Inform. Glob., vol. 8, no. 1, 2017.
[8] N. Rachmat, Y. Yohannes, and A. Mahendra, “Klasifikasi Jenis Ikan Laut Menggunakan Metode SVM dengan Fitur HOG dan HSV,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 4, pp. 2235–2247, 2021, doi: 10.35957/jatisi.v8i4.1686.
[9] N. Neneng, N. U. Putri, and E. R. Susanto, “Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern,” CYBERNETICS, vol. 4, no. 02, 2021, doi: 10.29406/cbn.v4i02.2324.
[10] A. H. Rangkuti, “Proses Ektraksi ciri citra dengan algoritma Local Binary Pattern dalam mendukung Klasifikasi citra bertekstur,” Computer Science. 2020. [Online]. Available: https://binus.ac.id/bandung/2020/12/proses-ektraksi-ciri-citra-dengan-algoritma-local-binary-pattern-dalam-mendukung-klasifikasi-citra-bertekstur/
[11] P. A. Octaviani, Y. Wilandari, and D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (SVM) Pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang,” vol. 3, no. 4, pp. 811–820, 2014, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian
[12] N. Nasution, K. Djahara, and A. Zamsuri, “Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak) Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak).” 2015.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.