Analisis Kelayakan Calon Pengawas Sekolah Dengan Menggunakan Metode Data Mining Decision Tree

  • Irma Rahmianti STMIK LIKMI
  • Eva Agustina Suparti
  • Christina Juliane
Keywords: Data Mining, C4.5 Algorithm, Classification, Decision Tree

Abstract

School supervisors have an important role in the world of education whose job is to improve the quality of education. Qualifications of competent school supervisors are needed to master academic performance and management of educational institutions. In the implementation of the selection of prospective school supervisors, each participant must meet the requirements of the level of education, class, age, years of service of teachers, and educator certificates. To determine graduation, certain conditions are prepared that are used as the basis for the assessment. The C4.5 algorithm used in the Decision Tree data mining method of data classification that produces one decision tree. The results of the dataset test using the C4.5 algorithm to determine the feasibility of prospective school supervisors using Rapidminer tools have good values, the accuracy calculation is 95.07%, the precision calculation is 100%, and the recall calculation is 82.28 %. The resulting knowledge is used as a reference in the eligibility of prospective school supervisors.

References

[1] Dadang Suhardan, Supervisi Profesional, (Cet. IV; Bandung: Alfabeta, 2010), h. 41.
[2] Dennis, Aprilia, Donny Aji Baskoro, Lia Ambarwati dan I Wayan Simri Wicaksana, “Belajar Data Mining Dengan Rapid Miner”, 2013
[3] F. Santoso, A. Syukur, and A.Z. Famani, “Algoritma C4.5 Dengan Particle Swarm Optimization Untuk Klasifikasi Lama Menghapal Al-Quran Pada Santri”, J.Teknol.Inf.,vol.14, no.2, pp.92-103, 2018.
[4] Kusrini and E.T.Luthfi, Algoritma Data Mining. Yogyakarta : Andi Offset, 2009.
[5] Liliana Swastina, “Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Mahasiswa”, Gema Aktualita, Vol.2 no. 1, Juni 2013
[6] M.F. Arifin and D. Fitrianah, “Penerapan Algoritma Klasifikasi C4.5 Dalam Rekomendasi Penerimaan Mitra Penjualan Studi Kasus :PT. Atria Artha Persada, “InComTech, vol.8 no.2, pp.87-102,2018, doi : 10.22441/incomtech.v8i1.2198.
[7] Piet A. Suhertian, Konsep Dasar dan Teknik Supervisi Pendidikan dalam Rangka Pengembangan Sumber Daya Manusia (Jakarta: Rineka Cipta, 2000), h. 20.
[8] Riyanto, U. (2019). “Analisis Perbandingan Algoritma Naive Bayes Dan Support Vector Machine Dalam Mengklasifikasikan Jumlah Pembaca Artikel Online. JIKA (Jurnal Informatika), 2(2), 62–72. https://doi.org/10.31000/.v2i2.1521
[9] Sagala, “Supervisi Pembelajaran. Bandung” : Alfabeta, 2012
[10] Suyanto, Data mining : Untuk Klasifikasi Dan Klasterisasi Data, 1st ed. Bandung: Informatika, 2017
Published
2023-03-14