Pemanfaatan Manajemen Pengetahuan untuk Membantu Persiapan Data pada Proses Data Mining
Abstract
The data mining process always involves a data preparation stage. Based on the experience of IBM data mining practitioners, 40-70% of data mining project time is spent on data preparation. This is because not everyone knows what the content of the available data is, so it will take time just to understand the data itself. The research method used adopts an information systems research framework, by comparing the knowledge base (data mining) with environmental facts (the duration of data preparation). Design/research is made using a knowledge management approach designed for data. Two qualitative and quantitative tables containing data related knowledge are used as an explicit form of data. With this knowledge the data preparation process can be shortened because miners are not mining data from zero knowledge.
References
[2] T. Ivanov, N. Korfiatis, dan R. V. Zicari, “On the inequality of the 3V’s of Big Data Architectural Paradigms: A case for heterogeneity,” 2013, doi: 10.48550/ARXIV.1311.0805.
[3] M. Al-Emran, V. Mezhuyev, A. Kamaludin, dan K. Shaalan, “The impact of knowledge management processes on information systems: A systematic review,” International Journal of Information Management, vol. 43, hlm. 173–187, Des 2018, doi: 10.1016/j.ijinfomgt.2018.08.001.
[4] K. Khurshid, A. A. Khan, H. Siddiqi, dan I. Rashid, “Big Data-9Vs, Challenges and Solutions,” Technical Journal, vol. 23, no. 3, hlm. 7.
[5] J. Liu dkk., “Data Mining and Information Retrieval in the 21st century: A bibliographic review,” Computer Science Review, vol. 34, hlm. 100193, Nov 2019, doi: 10.1016/j.cosrev.2019.100193.
[6] P. Bhatia, Data mining and data warehousing: principles and practical techniques. Cambridge, United Kingdom ; New York, NY: Cambridge University Press, 2019.
[7] M. Kantardžić, Data mining: concepts, models, methods, and algorithms, 3rd ed. Hoboken Piscataway: John Wiley IEEE press, 2020.
[8] T. Gao, Y. Chai, dan Y. Liu, “A review of knowledge management about theoretical conception and designing approaches,” IJCS, vol. 2, no. 1, hlm. 42–51, Jul 2018, doi: 10.1108/IJCS-08-2017-0023.
[9] Z. A. Al-Sai, R. Abdullah, dan M. H. Husin, “Critical Success Factors for Big Data: A Systematic Literature Review,” IEEE Access, vol. 8, hlm. 118940–118956, 2020, doi: 10.1109/ACCESS.2020.3005461.
[10] I. Alhassan, D. Sammon, dan M. Daly, “Critical Success Factors for Data Governance: A Theory Building Approach,” Information Systems Management, vol. 36, no. 2, hlm. 98–110, Apr 2019, doi: 10.1080/10580530.2019.1589670.
[11] A. R. Hevner, S. T. March, J. Park, dan S. Ram, “Design Science in Information Systems Research,” MIS Quarterly, vol. 28, no. 1, hlm. 75–105.
[12] M. Fakhar Manesh, M. M. Pellegrini, G. Marzi, dan M. Dabic, “Knowledge Management in the Fourth Industrial Revolution: Mapping the Literature and Scoping Future Avenues,” IEEE Trans. Eng. Manage., vol. 68, no. 1, hlm. 289–300, Feb 2021, doi: 10.1109/TEM.2019.2963489.
[13] M. Evans, K. Dalkir, dan C. Bidian, “A Holistic View of the Knowledge Life Cycle: The Knowledge Management Cycle (KMC) Model,” vol. 12, no. 2, hlm. 13, 2014.
[14] K. Jamsa, Introduction to data mining and analytics with machine learning in R and Python. Burlington, Massachusetts: Jones & Bartlett Learning, 2021.
[15] A. Hannachi, Patterns Identification and Data Mining in Weather and Climate. Cham: Springer, 2021.
[16] S. A. Mohd Selamat, S. Prakoonwit, R. Sahandi, W. Khan, dan M. Ramachandran, “Big data analytics—A review of data‐mining models for small and medium enterprises in the transportation sector,” WIREs Data Mining Knowl Discov, vol. 8, no. 3, Mei 2018, doi: 10.1002/widm.1238.
[17] F. Martinez-Plumed dkk., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, hlm. 3048–3061, Agu 2021, doi: 10.1109/TKDE.2019.2962680.
[18] IBM, “Data preparation in the mining process,” 27 Februari 2021. https://www.ibm.com/docs/en/db2/11.1?topic=studio-data-preparation-in-mining-process (diakses 9 April 2022).
[19] C. Schröer, F. Kruse, dan J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Computer Science, vol. 181, hlm. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
[20] S. Husain dan J.-L. Ermine, Knowledge management systems concepts, technologies and practices. 2021. Diakses: 5 Februari 2022. [Daring]. Tersedia pada: https://doi.org/10.1108/9781801173483
[21] I. Mistrik, M. Galster, B. R. Maxim, dan B. Tekinerdogan, Ed., Knowledge Management in the Development of Data-Intensive Systems, 1 ed. Auerbach Publications, 2021. doi: 10.1201/9781003001188.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.