PENERAPAN ALGORITMA K-MEANS CLUSTERING DALAM PROSES PENGELOMPOKAN KASUS MENINGGAL DUNIA COVID-19 DI INDONESIA

  • Rizki Entis Sutisna -

Abstract

The country of Indonesia is still struggling with the Covid-19 outbreak to date, the same as other countries in the world. The number of Covid-19 cases in Indonesia every day continues to increase along with the recovery rate, but not a few also die. The Indonesian government provides socialization to the public to carry out physical distancing to break the chain of the spread of COVID-19 which is spreading in various parts of Indonesia. Therefore, there must be a lot of data collection, from that much data we can see patterns in determining the grouping of the spread of Covid-19 based on tests using the k-means clustering algorithm. The result of the research is to know the area that has the highest death rate. And making decisions for areas with a high death rate will be included in the red zone and action must be taken immediately.

References

1. Unicef. Coronavirus [Internet]. 2021 [dikutip 9 April 2022]. Tersedia pada: https://www.unicef.org/indonesia/id/coronavirus
2. Binus. Clustering [Internet]. 2021 [dikutip 17 April 2022]. Tersedia pada: https://socs.binus.ac.id/2017/03/09/clustering/
3. Definisi fungsi metode dan penerapan data mining [Internet]. 2022 [dikutip 17 April 2022]. Tersedia pada: https://idcloudhost.com/apa-itu-data-mining-definisi-fungsi-metode-dan-penerapannya/
4. D, Wardani NW. Analisis Pesebaran Penularan Virus Corona Di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering. VIII:105–17.
5. D. N. P S, Y S. Analisis Cluster dengan Metode K-Means pada Persebaran Kasus COVID-19 Berdasarkan Provinsi di Indonesia," PRISMA, Prosiding Seminar Nasional Matematika,.
6. D. T. U. Analisis Karakteristik Wilayah Transmisi Covid-19 dengan Menggunakan Metode KMeans Clustering.
Published
2023-03-14