The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree
Abstract
Water is an essential role that need for human life, but not all water can be categorized as safe to drink. Therefore, it is compulsory to identify the classification between safe and unsafe water to drink. The purpose of this research is to determine the accuracy of water quality as much as 3,276 data with a pre-processing process to produce consistent data. In this study, the authors compare three methods in the data classification process, namely K-nearest neighbors, Naïve Bayes, and Decision Tree to find out the most accurate method with the maximum level of accuracy. The results showed that the highest level of accuracy is the K-nearest neighbors method with an accuracy rate of 71.19% where the class precision is for pred. zero (pred. negative) was 72.89%, pred. one (pred.positive) is 67.16%, while the Naïve Bayes method is 62.99% where the class precision is for pred. zero (pred. negative) is 64.26%, pred one (pred.positive) is 56.28%, and Decision tree is 61.77% where the class precision is for pred. zero (pred. negative) was 61.47%, pred one (pred.positive) was 100.00%.
References
[2] S. Wahyuningsih and D. R. Utari, “Perbandingan Metode K-Nearest Neighbor , Naive Bayes dan Decision Tree untuk Prediksi Kelayakan Pemberian Kredit,” Konf. Nas. Sist. Inf. 2018 STMIK Atma Luhur Pangkalpinang, 8 – 9 Maret 2018, pp. 619–623, 2018.
[3] M. A. Rahman, N. Hidayat, and A. Afif Supianto, “Komparasi Metode Data Mining K-Nearest Neighbor Dengan Naïve Bayes Untuk Klasifikasi Kualitas Air Bersih (Studi Kasus PDAM Tirta Kencana Kabupaten Jombang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Vol. 2, No. 12, Desember 2018, hlm. 6346-6353 e-ISSN, vol. 2, no. 12, pp. 925–928, 2018.
[4] R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.
[5] Kadiwal, A . (2021). Water Quality. Diakses pada 2 Oktober 2021, dari https://www.kaggle.com/adityakadiwal/water-potability
[6] N. T. Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes , Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl,” J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.
[7] M. A. Rahman, N. Hidayat, and A. Afif Supianto, “Komparasi Metode Data Mining K- Nearest Neighbor Dengan Naïve Bayes Untuk Klasifikasi Kualitas Air Bersih (Studi Kasus PDAM Tirta Kencana Kabupaten Jombang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Vol. 2, No. 12, Desember 2018, hlm. 6346-6353 e-ISSN, vol. 2, no. 12, pp. 925–928, 2018.
[8] R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.
[9] P. N. Harahap and S. Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah),” Matics, vol. 11, no. 2, p. 46, 2020, doi: 10.18860/mat.v11i2.7821.
[10] D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
[11] A. M. Nursantoso, N. A. Suwastika, and R. Yasirandi, “Prediksi Kondisi Pencemaran Air Sungai Citarum Berbasis Internet of Things dan Klasifikasi Naive Bayes,” Ind. J. Comput., vol. 5, no. March, pp. 1–2, 2020, doi: 10.21108/indojc.2020.5.1.317.
[12] P. Meilina, “Penerapan Data Mining dengan Metode Klasifikasi Menggunakan Decision Tree dan Regresi,” J. Teknol. Univ. Muhammadiyah Jakarta, vol. 7, no. 1, pp. 11–20, 2015, [Online]. Available: jurnal.ftumj.ac.id/index.php/jurtek.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.