Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU

  • Yadi Karyadi Pradita University

Abstract

Kualitas udara menjadi salah satu masalah utama di kota besar. Salah satu cara pengendalian kualitas udara adalah dengan cara memprediksi beberapa parameter utama dengan menggunakan algoritma deep learning. Penelitian ini menggunakan metoda deep learning yang merupakan bagian dari Recurrent Neural network yaitu Long Short Term Memory,  Bidirectional Long Short Term Memory, dan Gated Recurrent Unit yang diterapkan pada permasalahan memprediksi data time series kualitas udara dengan parameter suhu, kelembaban, particular matter PM10, dan Indeks Standar Pencemar Udara (ISPU).  Dari hasil pengujian 3 jenis model prediksi terhadap 4 variabel berdasarkan kreteria penilain menggunakan RMSE dari data testing dan dibandingkan dengan standard deviasi, maka model LSTM dan LSTM Bidirectional  telah menunjukan hasil yang bagus untuk permasalahan data yang bersifat time series kualitas udara,   Sedangkan model  Gated Recurrent Unit (GRU) menampilkan hasil yang kurang bagus.

References

[1] Denny Britz. 2015, “Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs”,
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
[2] M.Y.Fathoni. Implementasi Metoda Fuzzy Time Series Untuk prediksi konsentrasi gas NO2
di udara. 2017
[3] B. Warsito. Permodelan General Regression neural network untuk prediksi pencemaran
udara kota Semarang. 2008.
[4] Kumaidi, Ali. Pengujian Algoritma Long Short Term Memory untuk prediksi kualitas udara
dan suhu kota Bandung. Institut Teknologi Harapan Bangsa Bandung. 2019.
[5] Indoml. Pengenalan Recurrent Neural Network (RNN) – Bagian 1.
https://indoml.com/2018/04/04/pengenalan-rnn-bag-1/. 2018.
[6] Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J. (2017). LSTM network: a deep learning
approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68-75.
[7] Saxena A, Sukumar TR, Nadu T, Nadu T. Predicting bitcoin price using LSTM and
Compare its predictability with Arima model. International Journal of Pure and Applied
Mathematics. 119(17):2591-2600. 2018
[8] Gaurav Singhal. LSTM versus GRU Units in RNN. 2020
https://www.pluralsight.com/guides/lstm-versus-gru-units-in-rnn.
[9] Chung, H., & Shin, K. S. (2018). Genetic algorithm-optimized long short-term memory
network for stock market prediction. Sustainability, 10(10), 3765.
[10] Manaswi, N. K. Deep Learning with Applications Using Python. Apress. 2018
[11] Gao Huang, Zhuang Liu, Laurens van der Maaten; Densely Connected Convolutional
Networks; 28 Jan 2018.
[12] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS,
2011.
[13] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations, 2017.
[14] X. Zhang, Z. Li, C. C. Loy, and D. Lin. Polynet: A pursuit of structural diversity in very
deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.
[15] Pradita University. Pedoman penulisan Jurnal. https://jurnal.pradita.ac.id/index.php/jii
[16] Balandhanka, Windspeed-Forecasting-LSTM-GRU, Github,
https://github.com/balandhanka/Windspeed-
[17] Forecasting-LSTM-GRU/commit/98a446d0846ebc3d977350b4b6868f860d423975. 2019.
[18] Briandi. https://github.com/briandi26/Deep-Learning-for-Air-Quality-Prediction. Github
2019.
[19] Bert, Carremans. Forecasting Air Pollution with Recurrent Neural Networks,
Towards Data Science. https://towardsdatascience.com/forecasting-air-pollution-with- recurrent-neural- networks-ffb095763a5c. 2018.
[20] Exchhattu, TimeseriesWeatherForecast-RNN-GRU-LSTM, Github,
https://github.com/exchhattu/TimeseriesWeatherForecast-RNN-GRU-LSTM, 2020
Published
2022-03-17