Desain Metode Fuzzy Untuk Pengendalian Kumbung Jamur Terintegrasi IoT

  • Angga Prasetyo Universitas Muhammadiyah Ponorogo
  • Mohammad Bhanu Setyawan Universitas Muhammadiyah Ponorogo
Keywords: fuzzy,mushroom,internet of things

Abstract

The ideal conditions for growing oyster mushrooms are at 65-75% humidity and 29-
31C during incubation, while the stem growth should be at 70-90% humidity and 29-32C. This
ideal ecosystem is maintained by aeration and manual watering, but the results have not been
maximized in preventing damage to the mycelium during the incubation period which results in
decreased crop yields. Automatic control has not been able to create ideal conditions because
the procedure for regulating air temperature and humidity is only based on fans and sprayers
which do not directly affect air conditions. Fuzzy logic used in industry to manage sensors,
accuators, robotics can be combined with the Internet of Things to solve this problem. The
performance of fuzzy logic in this system can be seen from the PWM response of the fan and the
duration of the pump. The test results of this control device are able to manipulate temperature,
humidity, in the oyster mushroom kumbung to create ideal conditions of 29 C-31 C, thus making
optimal mushroom growth with an average daily harvest of 4 kg.

References

[1] F. I. Ubaidillah, I. Istiadi, and M. Mukhsim, “Sistem Pemantauan Dan Pengendalian Rumah Jamur Dengan Metode Fuzzy Secara Wireless,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 223–232, 2020, doi: 10.24176/simet.v11i1.3975.
[2] F. Masykur, “Application of Message Queuing Telemetry Transport ( MQTT ) Protocol in the Internet of Things to Monitor Mushroom Cultivation.”
[3] N. S. Devi, D. Erwanto, and Y. B. Utomo, “Perancangan Sistem Kontrol Suhu Dan Kelembaban Pada Ruangan Budidaya Jamur Tiram Berbasis IoT,” Multitek Indones., vol. 12, no. 2, p. 104, 2018, doi: 10.24269/mtkind.v12i2.1331.
[4] T. Kaewwiset and P. Yodkhad, “Automatic temperature and humidity control system by using Fuzzy Logic algorithm for mushroom nursery,” 2nd Jt. Int. Conf. Digit. Arts, Media Technol. 2017 Digit. Econ. Sustain. Growth, ICDAMT 2017, pp. 396–399, 2017, doi: 10.1109/ICDAMT.2017.7905000.
[5] F. Rozie, I. Syarif, M. U. H. Al Rasyid, and E. Satriyanto, “Sistem Akuaponik untuk Peternakan Lele dan Tanaman Kangkung Hidroponik Berbasis IoT dan Sistem Inferensi Fuzzy,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 157, 2021, doi: 10.25126/jtiik.0814025.
[6] Tandiono, Rusli, and Muslim, “Pengendalian Suhu dan Kelembaban pada Budidaya Jamur Tiram dengan Menggunakan Metode Kontrol Logika Fuzzy,” J. EECCIS (Electrics, Electron. Commun. Control. Informatics, Syst., vol. 10, no. 1, pp. 16–19, 2016, [Online]. Available: http://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/478/303.
[7] F. Fahmizal, T. R. Orlando, B. B. Murti, M. Budiyanto, and A. Mayub, “Kendali Logika Fuzzy pada Sistem Electronic Control Unit (ECU) Air Conditioner Mobil,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 1, p. 25, 2019, doi: 10.25126/jtiik.2019611045.
[8] J. Ilmiah and M. Indonesia, “Multitekq,” vol. 10, no. 1, pp. 48–56, 2016.
[9] A. Prasetyo and A. R. Yusuf, “Integrated Device Electronic Untuk Sistem Irigasi Tetes Dengan Kendali Internet of Things,” J. Ilm. Teknol. Inf. Asia, vol. 14, no. 1, p. 1, 2019, doi: 10.32815/jitika.v14i1.361.
[10] I. Mahesa, A. G. Putrada, and M. Abdurohman, “Egg Quality Detection System Using Fuzzy Logic Method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 207–216, 2019, doi: 10.22219/kinetik.v4i3.839.
Published
2022-03-16