Perbandingan Metode SVM-Segmentasi Untuk Mendeteksi Kutu Beras Dalam Citra Beras

  • Uvi Desi Fatmawati Universitas Pertahanan Republik Indonesia
  • Wahyu Hidayat Universitas Pertahanan Republik Indonesia
  • Dananjaya Ariateja Universitas Pertahanan Republik Indonesia
  • Iqbal Ahmad Dahlan Universitas Pertahanan Republik Indonesia
Keywords: Keywords—SVM, HSV, Segmentation, Rice Weevils, Accuracy

Abstract

 Support Vector Machine (SVM) is a classification method that works by finding the hyperplane with the largest margin. Saturation Value (SV) is a digital image color model consisting of two elements, namely Saturation and Value. SV is taken from HSV, then only two elements are used. Segmentation is the process of separating an image that will be detected with a background image. Rice weevils are small pests that damage the quality of rice in rice storage. The quality and nutrition of rice will be reduced because of that bug. In this study, two methods have been used to detect the rice weevil that placed on a rice in an image.

In the first method, feature extraction of the rice weevil texture is taken from RGB images and feature extraction of the SV brightness values ​​is taken from converting RGB images to HSV images. These two parameters are used as the SVM data training. In the second method, SV value in the HSV color model is used to separate between the rice weevil as the object detected and a rice as the background. The results showed that the first method provides an accuracy rate of 78.95% while the second method is 84.78%.

Keywords—SVM, HSV, Segmentation, Rice Weevils, Accuracy

References

[1] Stone, A.A.R., 2018, Segmentasi Citra Pada Robot Sepak Bola Beroda Menggunakan Multilayer Neural Network Dan Fitur Warna HSV, Skripsi, Fakultas Teknologi Informasi Dan Komunikasi, Institut Teknologi Sepuluh November, Surabaya.
[2] Sinaga, A.S. and Marpaung,E. 2020. Segmentasi Warna HSV Telapak Tangan Untuk Deteksi Bakteri Pada Pandemi Covid 19. Fountain of Informatics Journal, No.3, Vol.5, 1-5.
[3] Dewi, S.C., Ananda, A., and Indah, L. 2013. Deteksi Gejala Penyakit Dengan Metode Segmentasi Warna HSV (Studi Kasus : Lingual). Jurnal Aksara Komputer Terapan, No.2, Vol.2.
[4] Indrabayu, Arifin, N. and Areni, I.S. 2019. Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Motode HSV. Jurnal JPE, No. 2, Vol.23, 113-116.
[5] Usuman, I., Dharmawan, A. and Frizky, A.Z.K. 2012. Sistem Pendeteksi Kulit Manusia Menggunakan Segmentasi Warna Kulit Pada Tipe Citra HSV (Hue, Saturation, Value). Indonesian Journal Of Electronics And Instrumentation Systems, No.2, Vol.2.
[6] Wandi, D., Fauziah and Hayati, N. 2021. Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV). Jurnal Media Indofmatula Budidarma, No.1, Vol.5, 308-316.
[7] Ritonga, A.S. and Purwaningsih, E. S. 2018. Penerapan Motode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan Smaw (Shield Metal ARC Welding). Jurnal Ilmiah Edutic, No.1, Vol.5, 17-25.
[8] Parapat, I.M., Furqon, T.F. and Sutrisno. 2018. Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, No.10, Vol.2, 3163-3169.
[9] Ramadhan, M.Y., Syauqy, D. and Tibyani. 2019. Implementasi Metode Klasifikasi Support Vector Machine (SVM) terhadap Pemakaian Minyak Goreng. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, No.2, Vol.3, 1669-1677.
[10]Salim, S.D. and Suryadibrata, A. 2019. Klasifikasi Anjing Dan Kucing Menggunakan Algoritma Linear Discriminant Analisys Dan Support Vector Machine. Ultimatics, No.1, Vol.XI, 46-51.
[11]Sari, P., Muflikah, L. and Wihandika, R.C. 2018. Klasifikasi Kualitas Susu Sapi Menggunakan Metode Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, No.3, Vol.2, 1204-2111.
[12]Yohannes, Pribadi, M.R. and Chandra, L. 2020. Klasifikasi Jenis Buah Dan Sayuran Menggunakan SVM Dengan Fitur Saliency-HOG Dan Color Moments. Elkha, No.2, Vol.12, 125-131.
[13]Muzakkiy, A.H. 2016. Deteksi Api Berbasis Sensor Visual Menggunakan Metode Support Vector Machines. Skripsi, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh November, Surabaya.
[14]Tumonglo, A., Setyawan, G.E. and Maulana. R. 2019. Sistem Deteksi Api Pada Quadcopter Ar Drone Menggunakan Metode Color Filtering HSV dan YCbCr Color Space. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, No. 5, Vol.3, 4622-4630.
[15]Mahardika, R. 2018. Identifikasi Konten Pornografi Berbahasa Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Skripsi, Fakultas Ilmu Komputer Dan Teknologi Informasi, Universiats Sumatera Utara, Medan.
[16]Damasela, R. Tomasouw, B.P. and Leleury, Z.A. 2021. Penerapan Metode Support Vector Machine (SVM) Untuk Mendeteksi Penyalahgunaan Narkoba. Parameter : Jurnal MAtematka, stastistika dan terapannya, No. 2, Vol.1.
[17]Adhilah, W.Q. Magdalena, R. and Saidah S. 2019. Deteksi Zat NArkotika Berdasarkan Tekstur Menggunakan Metode Fractal Dimension dan Klasifikasi SVM. E-Proceeding of Engineering, No.3, Vol.6, 10219-10225.
[18]Hendrival and F.P.Romadani. 2018. Kajian Kerentanan Dan Kerusakan Beras Lokal Provinsi Sumatera Selatan Terhadap Hama Pascapanen Sitophilus oryzae L. (Coleoptera: Curculionidae). Jurnal Biota, No.2, Vol.4, 90-97.
[19]M. Isnaini, E.R, Pane and S.Wiridianti. 2015. Pengujian Beberapa Jenis Insektisida Nabati Terhadap Kutu Beras (Sitophilus Oryae L). Jurnal Biota, No.1, Vol.1, 1-8.
[20]Yunliang, J., Qing, S., Jing, F. and Xiongtao, Z. 2010. The Classification for E-government Document Based on SVM. In Web Information Systems and Mining (WISM). 2010 International Conference on, Vol. 2, 257-260.
[21]Chang, Chung, C. and Lin, C.J. 2001. LIBSVM: A Library for Support Vector Machines.
[22]Cahya, Algoritma Support Vector Machine (SVM), https://cahyadsn.phpindonesia.id/extra/svm.php#, diakses tgl 11 Oktober 2021.
[23]Prasetyo, E. 2011. Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Penerbit Andi.
[24]Yunus, M. 2020. Feature Extraction : Gray Level Co-occurrence Matrix (GLCM), https://yunusmuhammad007.medium.com/feature-extraction-gray-level-co-occurrence-matrix-glcm-10c45b6d46a1, diakses tgl 11 Oktober 2021.
[25]Matlab. 2015. Graycoprops Feature.
[26]Mathworks. Learn optimal hyperplanes as decision boundaries , https://ww2.mathworks.cn/en/discovery/support-vector-machine.html diakses tgl 11 Oktober 2021.
[27]He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-12.
[28]Simon, A. 2019. Implementasi Metode Color Model Filtering HSV Untuk Mendeteksi Bola Pada Robot Sepak Bola Beroda. Skripsi, Universitas Sumatera Utara, Medan.
[29] Ford, A. and Roberts, A. 1998. Colour Space Conversions, Charles, Pynton.
[30]Jiang, X.J. and Scot, P.J. 2020. Advance Metrology. https://www.sciencedirect.com/topics/engineering/morphological-filter diakses tgl 11 Oktober 2021.
[31]Bovik, A.C. 2009. The Essential Guide to Image Processing. https://www.sciencedirect.com/science/article/pii/B9780123744579000044, diakses tgl 11 Oktober 2021
[32]Yulio, A. 2021. Operasi Morfologi Pada Pengolahan Citra. https://devtrik.com/opencv/operasi-morfologi-pada-pengolahan-citra/, diakses tgl 6 Oktober 2021.
[33]Admin. Image Blurring Menggunakan OpenCV. https://skillplus.web.id/image-blurring-menggunakan-opencv/, diakses tgl 6 Oktober 2021.
[34]Anomin. “Smoothing Images”, Internet : https://docs.opencv.org/4.5.3/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html, [Oct. 6, 2021].
[35]L.Tan. 2008. Digital Signal Processing Fundamentals And Application. Gergia , Elsevier.
Published
2022-04-06