• Gusmelia Testiana UIN Raden Fatah Palembang
Keywords: sentiment analysis, quality service, Support VectorMachine, Twitter


Measuring customer satisfaction is one of the most important aspects of any successful companyto improve the quality of its service,therefore collecting reviews is highly recommended.However, gathering datais not enough, without having efficient and reliable automated systemsthat capable of analysing the data and extracting valuable information for further improvement.Nowadays, social media is getting more and more attention as public and private opinions onvarious subjects are expressed and disseminated continuously through various social media.Twitter offers a fast and effective way to analyse people's perspectiveson important things forsuccessful universities. Developing a program for sentimentanalysis is the approach tocomputationally measure people's perceptions. In this study, public opinion regarding UIN RadenFatah Palembang was analysed using Support VectorMachine (SVM) method in determining thepositive or negative sentiment of a tweet by doing initial processing for unstructured data fromTwitter. The results indicated that the polarity of sentiment towards UIN Raden Fatah Palembangon Twitter as seen from 100 samples of tweets, 89 (89%) had positive sentiments and 11 (11%)had negative sentiments. The level of accuracy in the classification of sentiment using SVM was70% with an average precision of 20.6%, anaverage recall of 70% and an average f-measure of62.7%.


Alwi, Hasan, Soenjono Dardjowidjojo, Hans Lapoliwa, dan Anton M. Moeliono. (2000). Tata Bahasa Baku Bahasa Indonesia (edisi ketiga). Jakarta: Balai Pustaka.

Asiyah, S. N., & Fithriasari, K. (2016). Klasifikasi Berita Online Menggunakan Metode Support Vector Machine dan K- Nearest Neighbor. Jurnal Sains dan Seni ITS Vol. 5 No. 2 , 317-322

Azan, Khairul. Mutu Layanan Akademik: Studi tentang Pengaruh Pemanfaatan Fasilitas Belajar dan Kinerja Staf Program Studi terhadap Mutu Layanan Akademik Program Studi di Sekolah Pascasarjana Universitas Pendidikan Indonesia. file:///D:/139300-ID-mutu-layanan-akademik-studi-tentang-peng.pdf

Bollen, Johan, 2009. Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena. North Carolina. 2010.

Buntoro, Ghulam Asrofi. Analisis Sentimen Calon Gubernur DKI Jakarta 2017 di Twitter. (2016). Integer Journal, 1(1), 32-4.

Christianini, Nello & John S. Taylor, 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

Dabbagh, N. and Kitsantas, A. (2012). Personal Learning Environments, Social Media, and Self-Regulated Learning: A Natural Formula for Connecting Formal and Informal Learning. Internet and Higher Education, 15, 3-8.

Ferdiana, Ridi, Fahim Jatmiko, Desi Dwi Purwanti, Artmita Sekar Tri Ayu, Wiliam Fajar Dicka. (2019). Dataset Indonesia untuk Analisis Sentimen. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 8(4).

Franky, 2008. Analisis Sentimen Menggunakan Metode Naïve Bayes, Maximum Entropy, dan Support Vector Machine pada Dokumen Berbahasa Inggris dan Dokumen Berbahasa Indonesia Hasil Penerjemahan Otomatis. Depok. 2008.

Gao, Ping. (2006). Teaching with Technology: Creating Constructivist Classrooms. Dalam Myint Swe Khine (ed.). Teaching with Technology: Strategies for Engaging Learners. Singapore: Prentice Hall.

Hartanto. (2017). Teks Mining dan Sentimen Analisis Twitter pada Gerakan LGBT. INTUISI Jurnal Psikologi Ilmiah , 18-25

Hemalatha, I., Varma, P.G., dan Govardhan, A., (2012), Preprocessing the Informal Teks for Efficient Sentiment Analysis, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Vol. 1, July – August 2012, ISSN 2278-6856