Prediksi Stok Obat pada Apotik Total Life Clinic Menggunakan Model Kombinasi Artificial Neural Network dan ARIMA
Abstract
In this study using a combination method or atau hybrid model Autoregressive Integrated Moving Average (ARIMA) dan Artificial Neural Network to predict drug stock so that it can help Total Life Clinic pharmacies to plan drug stock inventory. The data used is drug stock data from 2015 to 2019 at Total Life Clinic pharmacies in the form of a monthly drug stock time series. In the analysis process to validate the prediction results using Mean Absolute Percentage Error (MAPE), while to see the performance of the ANN using Mean Squared Error (MSE). the validation results have a small error with a MAPE value of 0.041503 on the drug Tofedex with an average predictive accuracy value of 99.95%. and also obtained a high error with a MAPE value of 14,049 with an average prediction accuracy of 85.95% on Ferospat Effervescent drug.
References
[2] Nichiforov, C., Stamatescu, I. Fagarasan, I. dan Stamatescu, G., 2017, Energy consumption forecasting using ARIMA and neural network models,” Proc. - 2017 5th Int. Symp. Electr. Electron. Eng. ISEEE 2017, vol. 2017-Decem, hal.. 1–4, doi: 10.1109/ISEEE.2017.8170657.
[3] Zheng, F. dan Zhong, S., 2011, Time series forecasting using an ensemble model incorporating ARIMA and ANN based on combined objectives, 2011 2nd Int. Conf. Artif. Intell. Manag. Sci. Electron. Commer. AIMSEC 2011 - Proc., hal. 2671–2674, doi: 10.1109/AIMSEC.2011.6011005.
[4] Azriat, K. F., Hoyyi, A. dan Mukid, M. A., 2014, Verifikas Model ARIMA Musiman Menggunakan Peta Kendali Moving Range, Gaussian, vol. 3, no. 4, hal. 701–710.
[5] Tofani, L. A. dan Mauludiyanto, A., 2012, Peramalan Trafik Sms Area Jabotabek dengan Metode Arima, vol. 1, no. 1, hal. 3–8.
[6] Ekananda, M., 2014, Analisis Data Time Series, Ke-1. Mitra Wacana Media.
[7] Santoso, B. dan Umam, A., 2018, Data Mining dan Big Data Analytics, Pertama. Penebar Media Pustaka, Yogyakarta.
[8] Suryo Putro, B. C., Mustika, S, I. W., dan Nugroho, L. E., 2018, Optimized Back-propagation Artificial Neural Network Algorithm for Smart Agriculture Applications, Proc. - 2018 4th Int. Conf. Sci. Technol. ICST 2018, vol. 1, hal. 1–5, doi: 10.1109/ICSTC.2018.8528655.
[9] Sodanil, M. dan Chatthong, P., 2014, Artificial neural network-based time series analysis forecasting for the amount of solid waste in Bangkok, 2014 9th Int. Conf. Digit. Inf. Manag. ICDIM 2014, hal. 16–20, doi: 10.1109/ICDIM.2014.6991427.
[10] Adnan, R., Ruslan, F. A., Samad, A. M. dan Zain, Z. M., 2012, Artificial neural network modelling and flood water level prediction using extended Kalman filter,” Proc. - 2012 IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE 2012, hal. 535–538, doi: 10.1109/ICCSCE.2012.6487204.
[11] Cheng, W., Zhou, Y., Guo, Y., Hui, Z. dan Cheng, W., 2019, Research on prediction method based on ARIMA-BP combination model,” 2019 IEEE 3rd Int. Conf. Electron. Inf. Technol. Comput. Eng. EITCE 2019, no. 2016, hal. 663–666, doi: 10.1109/EITCE47263.2019.9094776.
[12] Yu, S., Dong, H., Chen, Y., He, Z. dan Shi, X., 2019, Clothing Sales Forecast Based on ARIMA-BP Neural Network Combination Model,” 2019 IEEE Int. Conf. Power, Intell. Comput. Syst. ICPICS 2019, hal. 367–372, doi: 10.1109/ICPICS47731.2019.8942427.
[13] Nabillah, I. dan Ranggadara, I., 2020, Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” vol. 5, no. 2, hal. 250–255, doi: 10.33633/joins.v5i2.3900.
[14] Sukerti, N. K., 2015, Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model,” Konf. Nas. Sist. Inform., hal. 592–597, [Online]. Available: https://media.neliti.com/media/publications/169644-ID-peramalan-deret-waktu-menggunakan-s-curv.pdf.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.