Desain Model Data Mining pada Model SECI untuk Pemetaan dan Ekstraksi Pengetahuan Kompetensi Lulusan

  • Mardiani Mardiani Universitas MDP

Abstract

Manajemen pengetahuan menggunakan Model SECI membantu dalam transfer pengetahuan tacit dan eksplisit. Keterbatasan kemampuan sumber daya manusia dalam transfer pengetauan membutuhkan alat bantu dalam prosesnya. Ekstraksi pengetahuan dapat dilakukan dengan implementasi data mining. Hasil keluaran data mining yang besar akan dimanfaatkan oleh dunia pendidikan untuk tujuan strategis, misalnya evaluasi penyusunan profil lulusan dari hasil analisis kompetensi lulusan. Kurikulum Program Studi disusun berdasarkan profil Lulusan dan Program Studi membutuhkan pemetaan kebutuhan dari data alumni dalam menyusun kurikulum, sementara alumni membutuhkan mata kuliah yang mendukung setelah selesai kuliah. Manajemen Pengetahuan menampung pengetahuan dari lulusannya, sementara Data mining digunakan sebagai alat dalam mengolah data. Transfer pengetahuan dan pengolahan data kompetensi lulusan, dan memungkinkan munculnya pengetahuan baru bagi perguruan tinggi yang bisa dimanfaatkan dalam proses penyusunan kurikulum berikutnya. Model yang digunakan adalah SECI dikombinasikan dengan algoritma klasifikasi dan clustering. Model SECI yang sudah dipetakan alat bantu teknologinya pada setiap prosesnya, dibuat lebih jelas dan spesifik pengelompokkannya dengan implementasi Data Mining pada setiap kuadran Model SECI. Desain model SECI yang dikombinasikan dengan teknologi Data Mining akan memperbaiki kekurangan yang terdapat pada model sebelumnya.

References

[1] R. P. Damario Haznam, Amelia Kurniawati, “Perancangan Alat Ukur dan Cara Pengukuran Kompetensi Lulusan Mahasiswa pada Lab Riset Enterprise System And Solution Universitas Telkom Menggunakan Metode SECI,” vol. 8, no. 2, pp. 2179–2186, 2021.
[2] P. Canonico, E. De Nito, V. Esposito, M. Pezzillo Iacono, and S. Consiglio, “Knowledge creation in the automotive industry: Analysing obeya-oriented practices using the SECI model,” J. Bus. Res., vol. 112, no. June, pp. 450–457, 2020, doi: 10.1016/j.jbusres.2019.11.047.
[3] S. Natek and M. Zwilling, “Student data mining solution–knowledge management system related to higher education institutions,” Expert Syst. Appl., 2014, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417414002462.
[4] S. Natek and M. Zwilling, “Knowledge Management Systems Support Seci Model of Knowledge-Creating Process,” Manag. Knowl. Learn. Jt. Int. Conf. 2016 Technol. Innov. Ind. Manag., pp. 1123–1131, 2016.
[5] O. Allal-Chérif and M. Makhlouf, “Using serious games to manage knowledge: The SECI model perspective,” J. Bus. Res., vol. 69, no. 5, pp. 1539–1543, 2016, doi: 10.1016/j.jbusres.2015.10.013.
[6] M. Dávideková and J. Hvorecký, “Collaboration tools for virtual teams in terms of the SECI model,” Adv. Intell. Syst. Comput., vol. 544, no. 1, pp. 97–111, 2017, doi: 10.1007/978-3-319-50337-0_9.
[7] M. I. Al-Twijri and A. Y. Noaman, “A New Data Mining Model Adopted for Higher Institutions,” Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 836–844, 2015, doi: 10.1016/j.procs.2015.09.037.
[8] A. Holzinger and M. Dehmer, “Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions.” bmcbioinformatics.biomedcentral, 2014, [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-S6-I1.
[9] M. Rogalewicz and R. Sika, “Methodologies of knowledge discovery from data and data mining methods in mechanical engineering,” 2016, [Online]. Available: https://journals.pan.pl/dlibra/show-content?id=106266&/methodologies-of-knowledge-discovery-from-data-and-data-mining-methods-in-mechanical-engineering-rogalewicz-michal-robert-sika?language=pl.
[10] Y. Bin Xiong and X. F. Zhong, “Study on knowledge management in process optimization of manufacturing enterprises based on data mining,” Appl. Mech. Mater., vol. 416–417, pp. 1381–1387, 2013, doi: 10.4028/www.scientific.net/AMM.416-417.1381.
[11] P. Ponniah, Data Warehousing Fundamentals. 2001.
[12] W. Hilwa and Samidi, “Prototype mobile Knowledge Management System (KMS) for Islamic banking with ‘Tiwana’ framework on university: Case study STEI SEBI,” 2014 Int. Conf. Cyber IT Serv. Manag. CITSM 2014, pp. 83–88, 2014, doi: 10.1109/CITSM.2014.7042181.
[13] K. Dalkir, Knowledge Management in Theory and Practice. 2005.
[14] R. Kretschmer, A. Pfouga, and S. Rulhoff, “Knowledge-based design for assembly in agile manufacturing by using Data Mining methods,” Adv. Eng. Informatics, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034616301586.
[15] S. K. Srivastava, B. Chandra, and P. Srivastava, “The impact of knowledge management and data mining on CRM in the service industry,” Nanoelectron. Circuits, 2019, [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-13-0776-8_4.
[16] M. Zekić-Sušac and A. Has, “Data Mining as Support to Knowledge Management in Marketing,” Bus. Syst. Res. J., vol. 6, no. 2, pp. 18–30, 2015, doi: 10.1515/bsrj-2015-0008.
[17] P. Ristoski and H. Paulheim, “Semantic Web in data mining and knowledge discovery: A comprehensive survey,” J. Web Semant., 2016, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570826816000020.
[18] L. Sadath, “Data Mining: A tool for knowledge management in human resource,” International Journal of Innovative Technology. Citeseer, 2013, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.681.3330&rep=rep1&type=pdf.
[19] Y. D. Guo, “Prototype system of knowledge management based on data mining,” Appl. Mech. Mater., vol. 411–414, pp. 251–254, 2013, doi: 10.4028/www.scientific.net/AMM.411-414.251.
[20] Y. Li, M. A. Thomas, and K. M. Osei-Bryson, “Ontology-based data mining model management for self-service knowledge discovery,” Inf. Syst. Front., 2017, [Online]. Available: https://link.springer.com/article/10.1007/s10796-016-9637-y.
[21] charlote K. Faith and A. K. Seeam, “Knowledge sharing in academia : A case study using a SECI model approach Knowledge sharing in academia : A case study using a SECI model approach,” J. Educ., vol. 9, no. June, pp. 52–70, 2018.
[22] M. L. Farnese, B. Barbieri, A. Chirumbolo, and G. Patriotta, “Managing knowledge in organizations: A nonaka’s SECI model operationalization,” Front. Psychol., vol. 10, no. December, pp. 1–15, 2019, doi: 10.3389/fpsyg.2019.02730.
[23] A. M. Obeidat, “IT adaption with knowledge conversion process (SECI),” Manag. Sci. Lett., vol. 9, no. Spceial Issue 13, pp. 2241–2252, 2019, doi: 10.5267/j.msl.2019.7.029.
Published
2021-09-14