Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM)

  • Roby Julian Universitas Multi Data Palembang
  • Muhammad Rizky Pribadi Universitas Multi Data Palembang
Keywords: Indonesia

Abstract

Stock investment is one of the right choices to get more profit. However, in investing in stocks, it is necessary to analyze the data of a company that can determine the rise or fall of a stock price in the company. Very dynamic movements require data modeling to predict stock prices in order to get a high level of accuracy. An algorithm was developed to solve the problem of long-term data or historical data, namely Long Short Term Memory (LSTM). By using the Long Short Term (LSTM) this study produces a fairly good RMSE value with an increase in the RMSE value based on the addition of the number of epoch variations. The optimal epoch variation was obtained with the number of epochs of 200. Meanwhile, the optimal RMSE value produced by the Long Short Term Memory (LSTM) method was generated by TINS issuers with an RMSE of 31.71.

Author Biography

Muhammad Rizky Pribadi, Universitas Multi Data Palembang

Informatika

References

[1] Ardian, 2003. Perilaku Konsumen Dimasa Sebelum dan Sesudah Krisis Moneter. Skripsi pada Fakultas Ekonomi, Universitas Palangkaraya Kalimantan Selatan.

[2] Arfan, A. & ETP., Lussina 2019. Prediksi Saham di Indonesia Menggunakan Algoritma Long Short Term Memory, SeNTIK.

[3] Arfan, A. & ETP., Lussina 2020. Perbandingan Algoritma Long Short-Term Memory dengan SVR pada Prediksi Harga Saham di Indonesia. LSTM, PETIR Vol.13, No. 1.
[4] Bursa Efek Indonesia. 2020. Retrieved from Saham: https://www.idx.co.id/produk/indeks/

[5] Cao, J., Li, Z., & Li, J. 2019. Financial Time Series Forecasting Model Based in CEEMDAN and LSTM. Physic A: Statistical Mechanics and its Applications, 519: 127-139

[6] Chung, H., & Shin, K. S. (2018). Genetic Algorithm-Optimized Long Short-Term Memory Network For Stock Market Prediction. Sustainability, 10(10), 3765.

[7] Fauzi, A. 2019. Forecasting Saham Syariah Dengan Menggunakan LSTM. Research Article: AlMasraf Jurnal Lembaga Keuangan dan Perbankan.

[8] J. B. Heaton, Deep Learning in Finance, no. February, pp. 1–20, 2016.

[9] Karno, ASB 2020 Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) dan ARIMA (Autocorrelation Integrated Moving Average) dalam Bahasa Python, ULTIMA InfoSys, Vol XI, No.1.

[10] Karno, ASB 2020. Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajat LSTM (Long ShortTerm Memory), JIFORTY Vol. 1, No. 1.

[11] Manaswi, N. K. (2018). Deep Learning with Applications Using Python. Apress.

[12] Otoritas Jasa Keuangan, 2016. Buku Saku Otoritas Jasa Keuangan Edisi 2. Jakarta pp. 186.

[13] Pakan, PD. 2020. Peramalan Kasus Positif COVID 19 Di Indonesia Menggunakan LSTM, Jurnal Ilmiah Flash Vol. 6, No. 1.

[14] Provost, F. & Fawcett, T. 2013. Data Science and it Relationship to Big Data and Data Driven Decision Making. Big Data, 1(1): 51-59.

[15] Ramasek, L, & Goldenberg, A 2016. TensorFlow: Biology’s Gateway to Deep Learning?, Cell System, Canada.

[16] Riyantoko, PA., Fahruddin, TM., Maulida, K. & Safitri, HE. 2020. Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long Short Term Memory, SEMNASIF.

[17] Rizki, M., Basuki, S., & Azhar, Y. 2019. Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memry Untuk Prediksi Curah Hujan Kota Malang, REPOSITOR Vol.2, No. 3.

[18] Santoso, B 2016, Bahasa Pemrograman Python di Platform GNU/LINUX, Universitas Multimedia Nusantara, Tangerang.

[19] Sugiartawan, P,. Pemana, AAJ., & Prakoso, PI. 2020. Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory, JSKTI Vol.1, No. 1.

[20] Suyudi, MAD., Djamal, EC., dan Asri Maspupah. 2019. Prediksi Harga Saham Menggunakan Metode Recurrent Neural Network. Makalah disajikan dalam Seminar Nasional Aplikasi Teknologi Informasi, Yogyakarta.

[21] Troiano, E. M. Villa, and V. Loia, Replicating a Trading Strategy by Means of LSTM for Financial Industry Applications, IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3226– 3234, 2018

[22] Wira, Desmond (2020). Belajar Saham Untuk Pemula. JurusCUAN, Jakarta.

[23] Wiranda, L. & Sadikin, M. 2019. Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk PT. Metiska Farma, Janapato Vol. 8, No. 3.

[24] Zahara, S, Sugianto, Ilmiddafif, MB 2021. Prediksi Indeks Harga Kosumen Menggunakan Metode Long SHort Term Memory (LSTM) Berbasis Cloud Computing, Jurnal RESTI, Vol. 3, No. 3.

[25] Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J. (2017). LSTM Network: A Deep Learning Approach For Short-Term Traffic Forecast. IET Intelligent Transport Systems, 11(2), 68-75.
Published
2021-09-14