DETEKSI LEMBAR JAWABAN KOMPUTER MENGGUNAKAN OMR (OPTICAL MARK RECOGNITION) DI MTS NURUL IMAN
Abstract
Conventional exams or manual exams were implemented decades ago and are still used today. This type of test uses a writing instrument as a test medium, namely the test is carried out in the form of general stationery such as paper, pencil, and pen, the questions and answers to the test are written by hand. One way to assess the success of the teaching process in schools is to carry out exams. In the implementation of the exam at MTS Nurul Iman, he used a computer answer sheet as an entry. Meanwhile, schools are required to have certain scanners that are expensive to correct computer answer sheets. Another alternative that can be done by schools is to manually correct computer answer sheets, but this makes a lot of time wasted, and can cause errors in correcting and slow work productivity. From the problems that have been described, to detect the computer answer sheet, a method is needed. Through this research, it is hoped that a method can be developed that automatically detects the answer choices on the computer answer sheet, so that more accurate and faster results are obtained. Based on the problems of this study, the researchers used the OMR (Optical Mark Recognition) method to detect computer answer sheets automatically. From the test results, it can be concluded that the accuracy of detection of computer answer sheets using OMR is 97%.
References
[2] Rosyad, A. M. (2019). Implementasi Pendidikan Karakter melalui Kegiatan Pembelajaran di Lingkungan Sekolah. Tarbawi: Jurnal Keilmuan Manajemen Pendidikan, 5(02), 173–190. https://doi.org/10.32678/tarbawi.v5i02.2074
[3] Nurhasanah. (2018). Pengembangan Tes Untuk Mengukur Kemampuan Penalaran Mahasiswa Mata Kuliah Geometri. Pepatudzu : Media Pendidikan Dan Sosial Kemasyarakatan, 14(1), 62. https://doi.org/10.35329/fkip.v14i1.186
[4] Putra, R. R. C., & Sugihartono, T. (2019). Penerapan Algoritma Fisher-Yates Shuffle pada Computer Based Test Ujian Sekolah di SMKN 1 Payung. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 18(2), 276–283. https://doi.org/10.30812/matrik.v18i2.399
[5] Sampebua, M. R., & Membala, S. B. (2018). Penerapan Aplikasi Ujian Berbasis Komputer Untuk Meningkatkan Kualitas Pendidikan Pada Smp. Jurnal Pengabdian Papua, 2(1), 24–31.
[6] Akbar, R., Silvana, M., & Alizar, A. F. (2019). Perancangan Aplikasi Pembayaran Non Tunai untuk Pengelolaan Bisnis Pencucian Mobil dengan Memanfaatkan Teknologi QR Code (Studi Kasus : Oto Pro Car Wash & Detailling Padang ). 3. jurnal.umj.ac.id/index.php/semnastek
[7] Idris, S. (2020). Diklat Optical Mark Recognition Evaluator Sebagai Media Peningkatan Efisiensi Guru Dalam Pemeriksaan Dan Analisis Hasil Ulangan Siswa Di Al-Fajar Academy Mataram Tahun 2020. 2, 76–79.
[8] Zulkhaidi, T. C. A.-S., Maria, E., & Yulianto, Y. (2020). Pengenalan Pola Bentuk Wajah dengan OpenCV. Jurnal Rekayasa Teknologi Informasi (JURTI), 3(2), 181. https://doi.org/10.30872/jurti.v3i2.4033
[9] Tryatmojo, B., & Maryati, R. I. S. (2019). Akurasi Sistem Face Recognition OpenCV Menggunakan Raspberry Pi Dengan Metode Haar Cascade. Jurnal Ilmiah Informatika (JIF), 7(2), 92–98.
[10] Thariq, A., & Yusliana, R. (2021). Sistem Deteksi Masker dengan Metode Haar Cascade pada Era New Normal COVID-19 Mask Detection System using Haar Cascade Method in New Normal Era of COVID-19. 9(2), 241–244. https://doi.org/10.26418/justin.v9i2.44309

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.