Implementation of Data Mining to Determine Drug Stock Inventory at Enok Pharmacy Using the K-Means Clustering Method
Abstract
Data mining processing has grown very rapidly in adapting every form of data analysis. Basically data mining deals with data analysis and the use of software techniques to look for patterns and regularities in hidden data sets. Stock management that is carried out inaccurately and carelessly will lead to high and uneconomical storage costs, because there may be vacancies or excess of certain products. This will certainly be very detrimental to all business actors such as the health center of the Enok Pharmacy. The k-means method is one of the data mining techniques used to help design an effective inventory strategy or stock order by utilizing sales transaction data that is already available in the company. This technique aims to classify medicinal products sold at Apotek Enok into several clusters of transaction data which are generally large in size using the k-means algorithm. This study aims to apply the k-means algorithm, the data taken as a case example is drug sales transaction data at the Enok Pharmacy. The results of the analysis of this study using 20 data. Clustering of drug data carried out with the K-Means algorithm obtained the results of the cluster after doing the 3rd iteration, namely there is a group of drugs that use slow in cluster 1 which has 6 members, groups of drugs that use fast are in cluster 2 which has 14 members. This cluster search uses a web base to find out which products are slow in use and which drugs are used fast.
References
[2] Windarto, A. P. (2017) ‘Penerapan Datamining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering Method’, Techno.Com, 16(4), pp. 348–357. doi: 10.33633/tc.v16i4.1447.
[3] Listiani, L., Agustin, Y. H. and Ramdhani, M. Z. (2017) ‘Implementasi algoritma k-means cluster untuk rekomendasi pekerjaan berdasarkan pengelompokkan data penduduk’, pp. 761–769.
[4] Alkhairi, P. and Windarto, A. P. (2019) ‘Penerapan K-Means Cluster Pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara’, Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), pp. 762–767.
[5] Aranda, J. and Natasya, W. A. G. (2016) ‘Penerapan Metode K-Means Cluster Analysis Pada Sistem Pendukung Keputusan Pemilihan Konsentrasi Untuk Mahasiswa International Class Stmik Amikom Yogyakarta’, Semnasteknomedia Online, 4(1), pp. 4-2–1. Available at: https://ojs.amikom.ac.id/index.php/
semnasteknomedia/article/view/1293.
[6] Ghofar, M. A. and Kurniawan, Y. I. (2018) ‘Aplikasi Pengelompokan Pelanggan Pada Ums Store Menggunakan Algoritma Kmeans , Program Studi Informatika , Fakultas Komunikasi dan Informatika’, 4(1).
[7] Bastian, A. et al. (2018) ‘Penerapan Algoritma’, (1), pp. 26–32.
[8] Asrul Sani (2018).” Penerapan Metode K-Means Clustering Pada Perusahaan”. Jurnal Sistem dan Informatika , 3, 47-60
[9] Agil Aditya,.dkk. (2018). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. JURNAL MEDIA INFORMATIKA BUDIDARMA Volume 4, Nomor 1, Januari 2020, Page 51-58 ISSN 2614-5278 (media cetak), ISSN 2548-8368 (media online) Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/mib DOI 10.30865/mib.v4i1.1784
[10] Rosmini . Dkk (2018). Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah. IT Journal Research and Development Vol.3, No.1, Agustus 2018 DOI : 10.25299/itjrd.2018.vol3(1).1773 e-ISSN: 2528-4053
[11] Saxena, A. et al. (2017) ‘A review of clustering techniques and developments’, Neurocomputing. Elsevier, 267, pp. 664–681.
[12] Kumar, K. M. and Reddy, A. R. M. (2017) ‘An efficient k-means clustering filtering algorithm using density based initial cluster centers’, Information Sciences. Elsevier, 418, pp. 286–301.
[13] Saputra, Agus. “ Webtrik : PHP, HTML5, dan CSS3 ” Jakarta, Februari 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
JATIS oleh http://jurnal.mdp.ac.id/index.php/jatisi disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.