FCD and NFT Algorithm in AR-Based Digestive System Using Single Marker

  • Akhmad Arief Mohajerani Universitas Nasional
Keywords: 3D Objects, Augmented Reality, Marker Detection, Learning Media, Human Digestive System

Abstract

Humans were created with various systems that have different abilities, ranging from the respiratory system, digestive system, circulatory system and also the excretory system. From the weight of this skeleton there are various organs that also have different tasks. However, not a few people do not know anything about the skeleton and what organs are in the body, for example, what are the organs and functions related to the digestive system. In this study, we will focus on the organs in the human digestive system. To make it more interesting to study, the creators will introduce these organs as an augmented reality application. This exploration is aimed at providing an understanding of what organs and functions exist in the framework related to human digestion. In this study using a Single Marker strategy, with a system development model, namely the waterfall model consisting of analysis, design, implementation, testing and maintenance and using Fats Corner Detection (FCD) and Natural Future Trackingx (NFT). The results of the test with three devices, the closest distance to display objects is ±12 cm while the farthest distance is 80-100 cm. What's more, test results that depend on response times to render 3d articles on three devices took under 2 seconds.

References

[1] Runtualu, D., & Purba, lilana, K. R. purba., 2015, Media Interaktif Pembelajaran Sistem Pencernaan. Jurnal Infra, 3(2), 103–108.
[2] R. Mauludin, A. S. Sukamto, and H. Muhardi., 2017, Penerapan Augmented Reality Sebagai Media Pembelajaran Sistem Pencernaan pada Manusia dalam Mata Pelajaran Biologi, J. Edukasi dan Penelit. Inform., vol. 3, no. 2, p. 117.
[3] Nurhidaya, R., & Hirawan, D., 2019, Implementasi Animasi Augmented Reality untuk Pelestarian Situs Bersejarah di Kabupaten Subang, Jurnal Ilmiah KOMPUTASI, 112, 1–8.
[4] Mustaqim, Ilmawan; Kurniawan Nanang., 2017, Pengembangan Media Pembelajaran Berbasis Augmented Reality, Jurnal Edukasi Elektro, Vol. 1, No. 1.
[5] Wiro Sasmito, G., 2017, Penerapan Metode Waterfall Pada Desain Sistem Informasi Geografis Industri Kabupaten Tegal,Jurnal Informatika:Jurnal Pengembangan IT (JPIT), 2(1), 6–12.
[6] A. Willis and Y. Sui., 2009, An algebraic model for fast corner detection, Proc. IEEE Int. Conf. Comput. Vis., no. Iccv, pp. 2296–2302.
[7] Abdillah, G. Y., Andryana, S., & Iskandar, A., 2020, Augmented Reality Sebagai Media Pembelajaran Perangkat Keras Komputer Dengan Fast Corner Dan Natural Feature Tracking, JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 5(2), 79.
[8] Yanling, Z., Xixi, C., Lu, Q., & Pengfei, C. 2019. A new fast corner detection method based on template matching. IOP Conference Series: Materials Science and Engineering, 563(5).
[9] Setyadi, R., & Ranggadara, I. 2020. Augmented reality using features accelerated segment test for property catalogue. Telkomnika (Telecommunication Computing Electronics and Control), 18(1), 140–147.
[10] Adelia, & Setiawan, J., 2018, Implementasi Customer Relationship Management ( CRM ) pada Sistem Reservasi Hotel berbasisi Website dan Desktop, Bandung, Universitas Kristen Maranatha, 6(2), 113–126.
Published
2021-09-14