Analysis of the Spread of Covid-19 Virus Transmission in West Java Province Using the K-Means Clustering Algorithm

  • Darmansah Darmansah Darmansah Institut Teknologi Telkom Purwokerto
Keywords: Analysis, Covid-19, Datamining, K-Means Clustering.

Abstract

Covid-19 or Corona Virus is a virus that emerged at the end of 2019. This virus is spreading rapidly in various countries in the world. Currently, almost all countries in the world are reported to have been infected by this new type of virus. This corona virus was first discovered in China and until now in a major country in the world, there is no Indonesian country. All provinces in Indonesia have now been exposed to the Covid-19 virus starting from March 2020. One of the provinces most exposed to Indonesia is West Java province. The covid-19 virus has spread in various cities and districts in West Java. To make it easier for the West Java regional government to make decisions on preventing the spawning of the Covid-19 virus, it is necessary for researchers to determine the level of spread of Covid-19 transmission which is divided into three clusters. The first cluster is C0 with the high category, C1 with the medium category and C2 with the low spread category. In the analysis of the spread of the covid-19 virus, the researchers used data mining methods and the K-Means Clustering algorithm to classify the distribution data. Then in data processing researchers use the Rapidminer Studio 7.6 application. From the results of this study, it was found that C0 there were 18 cities / districts, C1 there were 1 city / regency and C2 there were 16 cities / districts where the Covid-19 virus was spreading in West Java province.

References

[1] Z. Zaharah and G. I. Kirilova, “Impact of Corona Virus Outbreak Towards Teaching and Learning Activities in Indonesia,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, 2020, doi: 10.15408/sjsbs.v7i3.15104.
[2] G. D. Rembulan, T. Wijaya, D. Palullungan, K. N. Alfina, and M. Qurthuby, “Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) di Setiap Provinsi di Indonesia Berdasarkan Analisis Klaster,” JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, 2020, doi: 10.30813/jiems.v13i2.2280.
[3] American Journal of Sociology, “Sosialisasi tentang Pencegahan Covid-19 di Kalangan Siswa Sekolah Dasar di SD Minggiran 2 Kecamatan Papar Kabupaten Kediri,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
[4] N. R. Yunus and A. Rezki, “Kebijakan Pemberlakuan Lock Down Sebagai Antisipasi Penyebaran Corona Virus Covid-19,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, pp. 227–238, 2020, doi: 10.15408/sjsbs.v7i3.15083.
[5] K. D. R Sianipar, S. Wanti Siahaan, M. Siregar, and P. R. Fikrul Ilmi Zer, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Kepuasan Pembelajaran Online Pada Masa Pandemi Covid-19,” J. Teknol. Inf., vol. 4, no. 1, pp. 101–105, 2020.
[6] T. H. Siagian, “Corona Dengan Discourse Network Analysis,” J. Kebijak. Kesehat. Indones., vol. 09, no. 02, pp. 98–106, 2020.
[7] D. Darmansah, “Analisa Penyebab Kerusakan Tanaman Cabai Menggunakan Metode K-Means,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 126–134, 2020, doi: 10.35957/jatisi.v7i2.309.
[8] C. S. Journal, R. Ordila, R. Wahyuni, Y. Irawan, and M. Y. Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING ( Studi Kasus : Poli Klinik PT . Inecda ),” vol. 9, no. 2, pp. 148–153, 2020.
[9] F. Wulandari and P. A. Jusia, “Klasifikasi Data Mining Untuk Mendiagnosa Penyakit ISPA Menggunakan Metode Naïve Bayes Pada Puskesmas Jambi Selatan,” vol. 2, no. 3, pp. 214–227, 2020.
[10] Y. Darnita, R. Toyib, and Y. Kurniawan, “PENERAPAN METODE K-MEANS CLUSTERING PADA APLIKASI ANDROID PADA TANAMAN,” vol. VII, no. September, pp. 105–114, 2020.
[11] S. A. Rahmah, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering ( Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja ),” vol. 1, no. 1, pp. 1–5, 2020.
[12] B. Nepal, M. Yamaha, H. Sahashi, and A. Yokoe, “Analysis of building electricity use pattern using k-means clustering algorithm by determination of better initial centroids and number of clusters,” Energies, vol. 12, no. 12, 2019, doi: 10.3390/en12122451.
[13] R. A. Indraputra and R. Fitriana, “K-Means Clustering Data COVID-19,” vol. 10, no. 3, pp. 275–282, 2020.
[14] I. U. 2019 Yusli Yenni, “Indonesian Journal of Computer Science,” STMIK Indones. Padang, vol. 8, no. 2, p. 121, 2019.
[15] R. Rusnandi, S. Suparni, and A. B. Pohan, “Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritma Fp-Growth Pada Pd Pasar Tohaga,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 119, 2020, doi: 10.23887/janapati.v9i1.19349.
[16] K. Khomsatun, D. Ikhsan, M. Ali, and K. Kursini, “Sistem Pengambilan Keputusan Pemilihan Lahan Tanam Di Kabupaten Wonosobo Dengan K-Means Clustering Dan Topsis,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 55, 2020, doi: 10.23887/janapati.v9i1.23073.
[17] N. W. Wardani and K. Selatan, “Analisis Pesebaran Penularan Virus Corona Di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” vol. 8, no. 1, 2021
Published
2021-09-14