Application of C4.5 Algorithm in Classification of Personality Types Based on KSPM Personality Theory

Penerapan Algoritma C4.5 dalam Klasifikasi Tipe Kepribadian Berdasarkan Teori Kepribadian KSPM

  • Alfian Alfian Universitas Nasional

Abstract

In today's technological developments, all lines of life must have been computerized. Likewise in a system of determining the type of personality type that is able to assist psychologists in completing their duties easily and perfectly. In this study, the system to be built uses an online-based desktop interface. In this study using a decision tree algorithm, where this method is a method that is quite suitable in terms of classification. Based on a study conducted by Florence Littauer that human personality has been classified into four types. The four are included in the protopsychological theory, this theory is divided into four basic personality types, namely choleric, sanguine, phlegmatic, and melancholic (KSPM). There are many ways to determine a person's personality. One of them is to use the decision tree c4.5 algorithm to carry out the process of classifying a person's personality. Decision tree c4.5 algorithm is a classification method that is widely used for classification problems. Decision tree algorithm c4.5 serves to explore data and model a group of data that has not been classified.

References

[1] Abdul Ibrahim, Amaliah Faradibah, A Ulfah Tenripada, “Implementasi Algoritma Decision Tree Dalam Analisis Hubungan Antara Kepribadian Dengan Kualitas Dari Mahasiswa Informatika,” Seminar Nasional Sistem Informasi dan Teknik Informatika., 2019.
[2] Carissa Limantara, Darsono Nababan, “Klasifikasi Kepribadian Menggunakan Algoritma Decision Tree Bedasarkan Ten Item Personality Inventory,” Jurnal Core IT, Vol.5 No.1, Juni 2019.
[3] Fiftin Noviyanto, Mely Amaliyah, “Aplikasi Tes Kepribadian Untuk Penempatan Karyawan Menggunakan Metode MBTI (Myers-Briggs Type Indicator) Berbasis Web (Studi Kasus : PT. Winata Putra Mandiri),” Spektrum Industri. Vol.10 No.1.
[4] Rismayanti, “Decision Tree Penentuan Masa Studi Mahasiswa Prodi Teknik Informatika (Studi Kasus : Fakultas Teknik dan Komputer Universitas Harapan Medan),” Jurnal Sistem Informasi. Vol.02 No.1, April 2018.
[5] Mambang, Finki Dona Marleny, “Prediksi Calon Mahasiswa Baru Menggunakan Metode Klasifikasi Decision Tree,” CSRID Journal. Vol.7 No.1, Februari 2015.
[6] Nur Hadi Kusomo, “Prediksi Tingkat Kematangan Emosional Seseorang Melalu Aktivitas Di Media Sosial Twitter Menggunakan Algoritma C4.5,” UPI Repository. 2016.
[7] Nurul Rofiqo, Agus Perdana Windarto, Eka Irawan, “Penerapan Algoritma C4.5 Pada Penentuan Tingkat Pemahaman Mahasiswa Terhadap Mata Kuliah,” Prosiding Seminar Nasional Riset Information Science (SENARIS), September 2019.
[8] Zelvi Gustiana, “Penerapan Algoritma C4.5 Dalam Sistem Pendukung Keputusan Evalusasi Kinerja Fasilitator Pamsimas (Studi Kasus Di Kabupaten Kampar),” Djitechno : Journal of Information Technology Research. Vol.1 No.1, 2020.
[9] Kartika Prameswari, Erwin Budi Setiawan, “Analisis Kepribadian Melalui Twitter Menggunakan Metode Logistic Regression dengan Pembobotan TF-IDF dan AHP,” e-Proceeding of Engineering. Vol.6 No.2, 2019.
[10] Imam Sutoyo, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” Jurnal Pilar Nusa Mandiri. Vol.14 No.2, 2018.
[11] N Anwar, A Pranolo, R Kurniwan, “Grouping The Community Health Center Patients Based on The Disease Characteristics Using C4.5 Decision Tree,” International Confrence on Engineering and Applied Technology (ICEAT). 2018.
[12] Elsa Paskalis Krisda Orpa, Eva Faja Rispanti, Tursina, “Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision Tree C4.5,” Jurnal Sistem dan Teknologi Informasi (JUSTIN). Vol.7 No.4, Oktober 2019.
[13] Siska Haryati, Aji Sudarsono, Eko Suryana, “Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus : Universitas Dehasen Bengkulu),” Jurnal Media Infotama. Vol.11 No.2. 2015.
Published
2021-09-14