Deteksi objek manusia pada image dengan metode Thinning nerdasarkan local maxima

  • Mawaddah Harahap Univeristas Prima Indonesia

Abstract

 The aim to detection human object is to identifying human object in image. There is a change human object affected by internal factors like face expression, body shape, skin color, and movement body and affected by external factor likes lighting condition, background which varies and corner taking image. The detect human object towards some condition likes obtained on image which containts more than one object, and object size which varies in image. The research aim to analizying and designing a application  for detect human object in image. Thinnging algorithm used to introduction pattern human object from a image for another image in order to equalize object pixel to detection maximum. The local maxima used as function for maximize searching pixel on object in image for make it easier and faster to detect image

References

[1] F. Faiza Alif, Rahmadwati, Wijono, Thinning Zhang-Suen dan Stenti Ford Untuk Menentukan Ekstraksi Ciri (Minutiae) Sebagai Identifikasi Pola Sidik Jari Whorl dan Loop, Universitas Brawijaya, 2016.
[2] J. Chi, Z. Yuchen, B. Sivaraman, W. Martin. J, J. Michael. I, Local Maxima in the Likelihood of Gaussian Mixture Models : Structural Results and Algorithmic Consequences, Conference on Neural Information Processing System, Bacelona, Spain, 2016.
[3] S. Hunter, Local Maxima of Quadratic Boolean Functions, Department of Mathematics, Harvard, 2018.
[4] H, Ayu. Segmentasi Skeleton Manusia dengan Menggunakan Metode Filter dan Thinning, Sistem Informasi, Universitas Gunadarma, 2018.
[5] N. Kadinar, T. Tia, Deteksi Temu Ruas Daun Sirih Menggunakan Algoritma Thinning, Jawa Barat, 2018.

[6] H. Ayu, Segmentasi Citra Bentuk dan Rangka Tubuh Manusia dengan Menggunakan Metode Median Filter dan Thinning, Sistem Informasi, Universitas Gunadarma, 2017.
[7] K. Raj, K. Sandeep, R. Manish, K. Sanket, An ECG Data Compression Method Via Local Maxima and ASCII Character Enconding, 2013
[8] Ayndri nico prayudo, okky nobian, setyadi, A. (2015). Aplikasi Pengenalan Warna Citra Dasar. Jurnal Ilmiah Widya Teknik, 14(1), 26–31.

[9] Santoso, S., & Handoyo, E. D. (2015). Kombinasi Penggunaan Model Warna Dalam Pendeteksian Letak Bibir pada Gambar digital Berwarna. Jurnal Teknik Informatika Dan Sistem Informasi. https://doi.org/10.28932/jutisi.v1i2.366

[10] Mohammad Mahmudul Alam Mia, S. K. (2015). An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY .

[11] Dr.P.Ponmuthuramalingam, R. d. (2016). NEURAL NETWORKS BASED IMAGE RETRIEVAL SYSTEM USING ROSENBLATT’S PERCEPTRON ALGORITHM. india: International Journal of Emerging Trends & Technology in Computer Science (IJETTCS).
[12] Hassan Ramchoun, M. A. (2016). Multilayer Perceptron: Architecture Optimization and Training . morocco: International Journal of Interactive Multimedia and Artificial Intelligence.
[13] Afirianto, T., & Amalia, F. (2017). Model Warna HSCbCrAB untuk Deteksi Kulit Menggunakan PCA-kNN. Jurnal INFORM. https://doi.org/10.25139/ojsinf.v2i2.312
[14] C. Dan, S. Armin, Online Supplement to “Multiple Testing of Local Maxima for Detection of Peaks in Random Fields” 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC67465 60
[15] Cheng Dan and Schwartzman Armin. Distribution of the height of local maxima of Gaussian random fields. Extremes, 18(2):213–240, 2015.
[16] D. B. Korovinskiy, N. V. Erkaev, V. S. Semenov, I. B. Ivanov, S.A. Kiehas, I. I. Ryzhkov. On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode. 2018. https://aip.scitation.org/doi/full/10.1063/1. 5016934
[17] Ayu Hardianti. (2018). Segmentasi Skeleton Manusia dengan Menggunakan Metode Median Filter dan Thinning.
[18] Zhong-Qiu Zhao, Peng Zheng, Shou-tao, Xindong Wu. (2018). Object Detection with Deep Learning : A Review.
[19] Khairul Umam, Benny Sukma Negara. (2016). Deteksi Objek Manusia pada Basis Data Vidio Menggunakan Metode Background Subtraction dan Operasi Morfologi.
[20] Faiza Alif Fakhrina, Rahmadwati, Wijono. (2016). Thinning Zhang-Suen dan Stentiford untuk Menentukan Ekstraksi Ciri (Minutiae) Sebagai Identifikasi Pola Sidik Jari Whorl dan Loop.
[21] Yosef Yudha, Dhesa Ardhiyanta, Laurensius Haris, dan Anastasia Rita Widiarti, 2016, Aplikasi Pengenalan Citra Warna Dasar, Jurnal Ilmiah Widya Teknik, Volume 15 Nomor 1 2016, ISSN 123.456.7890.
Published
2020-12-18