Group Decision Support System (GDSS) dengan Metode Entropy untuk Menentukan Prioritas Antrian Layanan Rumah Sakit Menggunakan Multiple Channel Model (M/M/s)

  • Ardy Hidayat
  • Reza Firsandaya Malik Universitas Sriwijaya
  • Siti Nurmaini
Keywords: queue, Group Decision Making, Entropy, Multiple Channel Model (M/M/s)


The queuing system service at the hospital has a problem that the service queue is longer than the health service itself. Based on the problem, we need a model that is able to provide a queuing services that are right on the target. In this paper, 10 criteria are used to determine the priority of the queue, namely: Risk Factors for Disease, Cost of Care, Medical Personnel, Medical Equipment, Waiting Time, Distance of Patient Domicile, Age, Gender, Number of patients served in the intended unit and Chairperson’s Decision. These 10 criteria in order to obtain more objective results are combined with Group Decision Making Type 2 (GDM2) and entropy methods to evaluate the queue of the Multiple Channel Model (M / M / s). The number of service counters is very influential on the number of queues and service times. The conclusion is that by doubling the number of service counters will cut 1/2 of the number of people served per time unit on each queue, especially between 8.00 am and 10:00 a.m. Furthermore, based on the assessment of Decision Maker (DM) in the decision-making group, the cost criteria are the most important or critical factors when giving priority services, followed by the leadership decision criteria and disease risk factors. Adding dangerous disease categories in the queuing system can make this system better.


[1] Gross dan Harris. 1984. The Queueing Systems. New York. McGraw-Hill, Inc.

[2] Rusdi. 2013. Analisis Penerapan Sistem Antrian Model Multiple Channel Query System(M/M/s) Pada Bagian Registrasi Pasien Di RSUD Salewangan Maros. Skripsi Jurusan Manajemen Fakultas Ekonomi dan Bisnis Universitas Hasanuddin Makassar.

[3] Aslan, Imran. ‘Applications Of Queues In Hospitals In Istanbul’. 2015. Journal of Social Sciences (COES&RJ-JSS). ISSN (E): 2305-9249 ISSN (P): 2305-9494
Publisher: Centre of Excellence for Scientific & Research Journalism, COES&RJ LLC
Online Publication Date: 1st April 2015 Online Issue: Volume 4, Number 2, April 2015

[4]Findari, S. Widya dan Nugroho, Anton, Y,. 2019,’Optimasi Sistem Antrian Pada Layanan Kesehatan Masyarakat Menggunakan Pendekatan Simulasi’, Jurnal Manajemen Industri Dan Logistik Vol. 03 No. 01 Mei 2019 Page : 14 - 22

[5]B. Jahn, E. Theurl, U. Siebert, and K. P. Pfeiffer,. 2010. ‘Tutorial in medical decision modeling incorporating waiting lines and queues using discrete event simulation’, Value in Health, vol. 13, no. 4. pp. 501–506, 2010.

[6]Chandra, Disha. 2010. ‘Reducing Waiting Time Of Outdoor Patients In Hospitals Using Different Types Of Models: A Systematic Survey’. International Journal of Business and Management ReviewVol.4, No.1, pp.79-91, July 2017

[7]Heizer, Jay dan Rander, Barry. 2004. Manajemen Operasi (Edisi Ketujuh).
Salemba Empat: Jakarta

[8]Heizer, Jay dan Rander, Barry. 2005. Operation Management Buku 2 edisi
ketujuh. Salemba Empat: Jakarta

[9]V. Tundjungsari, J. E. Istiyanto, E. Winarko, and R. Wardoyo, ‘A reputation based trust model to seek judgment in participatory group decision making,’ in Distributed Framework and Applications (DFmA), 2010 International Conference on, 2010, pp. 1–7.

[10]Ming-Chang Lee, Jui-Fang Chang, Jung-Fang ChenAn.2011. ‘ Entropy Decision Model for Selection of Enterprise Resource Planning System’, International Journal of Computer Trends and Technology- March to April Issue 2011

[11]Willcox S, Seddon M, Dunn S, et al. 2007. ‘Measuring and reducing waiting times: a cross-national comparison of strategies’. Health Aff 2007, pp.78–87.

[12]Ming-Chang Lee, Jui-Fang Chang, Jung-Fang Chen.’An Entropy Decision Model for Selection Enterprise Resource Planning System’. International Journal of Computer Trends and Technology- March to April Issue ,2011, pp. 1-9.

[13]A. De Luca, and S. Termini, “A definition of anon-probabilistic entropy in the setting of fuzzy sets theory”, Information and Control, Vol. 20,1972. pp.201-312.

[14]Hassan Masoumi, Farideh Ashrafe Ghanjouei, Khodabakhshe Dashgarzade and Shahram Javadi.’Presentation of an Entropy Decision Making Pattern to Develop a Comprehensive External Evaluation Model of Sporting Federations’ Performance Using Fuzzy Approach World Applied Sciences Journal 22 (12), 2013. Pp. 1718-1728

[15]Wiryasaputra, Rita. 2012. Sistem Pendukung keputusan Pengalokasian Spare Part dengan Metode Entropy danTOPSIS. Thesis. Jurusan Ilmu Komputer dan Elektronika FMIPA UGM Yogyakarta.

[16]Turban, Efraim, 1995, Decision Support System and Expert System, 4th ed., Prentice-Hall, Inc.,New Jersey, pp 472-679

[17]Kusumadewi, S., Hartati, S., Harjoko, A., dan Wardoyo, R., 2006, Fuzzy Multi-Attribute Decision Making (FUZZY MADM), Graha Ilmu, Yogyakarta.

[18]Mauidzoh, U dan Zabidi, Y., 2007, ‘Perancangan Sistem Penilaian dan Seleksi Supplier Menggunakan Multi Kriteria’, Jurnal Ilmiah Teknik Industri, volume 5, no. 3, hal 113 – 122.

[19]Triyanti, V., dan Gadis, M.T., 2008, ‘Pemilihan Supllier untuk Industri Makanan Menggunakan Promethee’, Journal of Logistics and Supply Chain Management, volume 1, No.2,hal.83-92,http:/, diakses 13 Januari 2011.

[20] Simon, J.L., 2000, Developing Decision Making Skill forBusiness, Armonk, NY.M.E dalam Turban, Efraim and J.E Aronson, 2001, Decision Support Systems and Intelligent Systems. 6th Edition, Prentice Hall Internatinal, New Jersey.

[21] Xie, P., 2008, ‘Development Ranking in Real Estate Strategy Management in China Based on TOPSIS Method’, ISECS International Colloquium on Computing, Communication, Control, and Management, volume 3, pp.254-258.

[22]Jung, F.C., Ming, C.L., dan Jui, F.C., 2011, ‘An Entropy Decision Model for Selection of
Enterprise Resource Planning System’, International Journal of Computer Trends and
Technology- March to April Issue 2011, ISSN:2231-2803, pp1-9, National Kaohsiung
University of Applied Science, Taiwan:
1/ijcttjournal-v1i1p30.pdf diakses 18 july 2011

[23]Cristobal, J.R.S., Biezma, V.M., Martinez, R., and Somoza, R., 2009, ‘Selection of
materials under aggressive environments: the vikor method’, International Conference on
Integrity, Reliability and Failure, 20-24 July 2009, pp S1204_P0266. Nautical Science
Department, 2 Materials Science and Technology Department University of Cantabria
Santander, Spain.

[24] Aziz, S. B., Riza, T. A., & Tulloh, R,. 2015. ‘Perancangan Dan Implementasi Aplikasi Sistem Antrian Untuk Pasien Pada Dokter Umum Berbasis Android Dan SMS Gateway. Elektro Telekomunikasi Terapan, Juli 2015.

[25] Wang, Y., Kao, C.S., 2007, ‘Applying Fuzzy Multiple Criteria Decision Making Method to Select the Distribution Center’, Fourth International Conference on Fuzzy Systems and
Knowledge Discovery, IEEE Computer Society., diakses 15 Maret 2010.

[26] Kurniati, Rezki dan Jaroji., 2018,’ Sistem Antrian Multi Channel Rumah Sakit Berbasis
Web’. JURNAL INOVTEK POLBENG - SERI INFORMATIKA, Vol. 3, No. 2 , November 2018

[27] Gray, B. ‘The Gender-Based Foundations of Negotiation Theory’, Research on Negotiations in organizations, 4, 1994, pp.3-36

[28] Hausken, K. “Game-Theoretic and Behavioral Negotiation Theory”. Group Decision and Negotiation, 6, 1997, pp.511 - 528.

[29] Jones, B.H., “Analytical Negotiation: An Empirical Examination of the Effects of Computer Support for Different Levels of Conflict in Two-Party Bargaining”. Ph.D.
Dissertation, Indiana University, US, 1988.

[30] Dutkova, Silvia., Achimsky, Karol., and Drozdziel, Pawel., 2020, ‘Simulation Of A Queuing System Of A Post Office In Anylogic Software’, diunduh dari, 27 Mei 2020.