Analisis Kinerja Algoritma Fuzzy C-Means dan K-Means pada Data Kemiskinan

  • Aniq Noviciatie Ulfah Universitas Islam Negeri Sunan Kalijaga
  • Shofwatul ‘Uyun Universitas Islam Negeri Sunan Kalijaga
Keywords: Clustering, The poverty, , FuzzyC-Means, , K-Means

Abstract

One of the local government of Gunungkidul efforts to realize program in order to alleviate poverty is to perform the data collection poverty of its citizens. The local government of Gunungkidul has formulated a collection by weighting against 15 indicators into three groups. The amount of data and indicators to be used will certainly lead to difficulties in implementation, ineffective and less objective. Therefore we need automation in the process of clustering data on poverty. This study aims to analyze the performance of the FCM algorithm and K-means are implemented in the data on poverty in Girijati Purwosari village into 3 clusters. Some of the steps that must be done prior to clustering, first performed pretreatment includes data cleaning and data transformation for clustering is then performed using the second algorithm. The suitability of data between FCM algorithm and the calculation of poverty indicators in the Girijati village is 50 % and for the K - Means algorithm is 83.33 % . Therefore, K- Means algorithm is more appropriately used in data classification of poverty based on the three criteria of poverty, beside FCM algorithm.

References

[1] Republika, 2013, Republika Online. http://www.republika.co.id/berita/nasional/jawatengah-diy-nasional/13/01/02/mfzoyv-tingkat-kemiskinan-di-diy-
tertinggi-sejawa [diakses tanggal 26 November 2013].
[2] BAPPEDA, 2008, Petunjuk Teknis Pendataan Ketenegakerjaan dan Keluarga Sejahtera. Kabupaten Gunung kidul, Pemerintahan Kabupaten Gunung kidul
BAPPEDA.
[3] Kardi dalam Susanto, A.R., 2013, Sistem Pendukung Keputusan Pengadaan Buku Perpustakaan STIKOM Surabaya Menggunakan Metode K-Means Clustering.
Makalah TA. Surabaya, STIKOM Surabaya.
[4] Helmiah, 2013, Sisitem Pendukung Keputusan untuk Pengkatogorian IPK dan Llama Studi Alumni Menggunakan Metode K-Means. Skripsi, Yogyakarta: UII
Teknik Informatika.
[5] Pamungkas, A., 2010, Perbandingan Distance Space Manhattan(Cityblock) dengan Ecludiean pada Algoritma K-Means Clustering Studi Kasus : Data Balita di
Wilayah Kecamatan Melati, Sleman. Skripsi, Yogyakarta, AKAKOM Sekolah Tinggi Manajemen Informatika dan Komputer
[6] Susilowati, R., 2012, Clustering Data Pasien Menggunakan Fuzzy C-Means dan Aglomerative Hierarchical Clustering. Skripsi, Yogyakarta, UIN Sunan Kalijaga
Teknik Informatika
[7] Pebrianto, R., 2011, Aplikasi Clustering Dengan Menggunakan Metode Fuzzy C-Means. Skripsi, Yogyakarta, UII Teknik Informatika.
[8] Pahri, A.N.I., 2012, Pengelompokan Uji Laboratorium sebagai Penunjang Diagnosa Demam Berdarah Menggunakan Fuzzy C-Means. Skripsi, Yogyakarta, UII
Teknik Informatika.
[9] BPS, 2011, Kemiskinan dan Ketimbangan Pendapatan: Pengukuran, Relevasi dan Pemanfaatan. In Nasional, D.S.K., ed. Workshop Evaluasi Data Podes.
Bandung, BPS.
[10] Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191-203.
[11] Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied statistics, 100-108.
Published
2015-03-12